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DEVELOPING THE FUNDAMENTAL THEOREM OF CALCULUS

INTRODUCTION

One of the '10-St useful tools of mathematics is the

Fundamental Theorem of Calculus
f

Although beginning

calculus students learn to use the Fundamental Theorem of

Calculus to'find the value of a definite integral, they

are often deft with only a manipulative tool and not a

thorough understanding of the tuol itself, its proof, and
its numerous applications. The purpose of this module is

to develop, by means of some applications, some of the

basic concepts of the Fundamental Theorem of Calculus.

2.# THREE SIMILAR PROBLEMS

Consider'the three folftwiNT,fcrpblems, followed by

their solutions:

EXAMPLE 1. Find the area of the rectangle thatLs 15 feet

by 10 feet.

EXAMPLE 2. Find the distance Traveled by a car if its

velocity.is 10 feet per second and the length:

of time it travels is 15 seconds.

EXAMPLE 3. Find the work required Co lift a 10-pound bag

of salt a distance of 15 feet.

SOLUTIONS. All thCee Troblems have common numerical quan-

tities, namely the 10 units and the 15 units.

Figure 1 and Table 1 show.the relationship

between these quoniities and the solution of

each example.

It should be noted in each of thes6 examples that the

vertical quantity is a constant function of the horizontal

quantity,-i.e., in EXAMPLE 1, the width w is' always 10 feet

!
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for 0

for 0

0 < d

< I < is,

< t < 15,

<-15.

A

10,

in EXAMPLE 2; thee C'elocity y = 10 ft/sec

and in EXAMPLE 3, the force f = 10 lb 'for

15

F-rgurelt -Solution to EXAMPLES I; 2, and 3.

TABLE` I *

Solution to EXAMPLES I, 2, and 3,

EXAM-
PLE ,

HoPizontaf
Axis

Vertical
Axls

Formula

,

.Solution
.

I

2

3

i = 15 ft

t = 15 sec

d = 15 ft

w = 10 ft

v = JO 'ft/sec -

f = 10 lb

A = kxw
D = vxt

W = f ZdI

Area = 15x10 = 150 ft2'

Dist. = 15x10 = 150 ft

Work = 15x 10 = 150 fl-lb

Exercises

1. A car, =lying with a velocity of 10 ft/sec begins tcireduce its

speed uniformly and comes to rest in 15 seconds. Explain why the

product of the velocity and .time does not producethe distance it

gels.

2. A 10-pound bag of salt is lifted up steadily to a height of 15 feet.

Ihe bag has a hole in it and salt leaks. out at a uniform rate, so

\that the bag is empty when it neaches the destined height. Explain

why the product of tAe force and the distance does not produce the

Work necessary to lift the bag.

(-1

2

1



-3. THREE MORE SIMILAR ppLEMS

-

.3.1 statement of the Problems
. .

Consider the,threffollowitng problems!

EXAMPLE 4. FRrhe. area of a'n.Lght triangle whose base

is 15 feet and whose altitude is 10 feet.

EXAMPLE 5. Find .the distance traveled by a car whose

veldcity at time t .s v(p= ((-2/3)t + 01'

ft /sec when it travels from t = 0 to t = 15
seconds. (See Exercise 1.)

.

EXAMPLt 6. Find the work done in lifting a.bag of salx,a

distance of 15 feet above the gl-ound, Assuming"

that the bag has a hole in it so thatikpt height

''d above the ground its-weight (m4gnitude of

downward .force) it g(d) = I(-2/3)d + 10] lb.

(See ,Exercise 2.)
.

3.2 'Solution of One of-the Problems

All three'exaTPles (EXAMPLES 4, 5, and 6) have been

purposely set up to make their_solutions,simdlar. iThiS

might not be noticeable at a first glance!) Foii EXAM LE 4,
.consider Figure 2 to you in its solution,

Allk
.

1

eip

Figure 2. Graphical aid for solution to EXAMPLE 4.



O

Since the area of a triangle =. (1/2)(length o.f bas'e)(length

.of altitude), then the area = (1/2)(15)(10) 75 square
a

feet. It should .be remembered that' this, problem was solved

rapidly by using anapprouiate formula.-

Notice that in Figure'2, w 'is not aconstant function

of Z. Since the line segment iafFigure 2 base slOpe ef'

(10-0)/(0-15) = (-2/'3) a1111 a w-.intercept. of 10,) then

w(2.) (-2/3)2 + 10,, where 0 < 2 < 15. For the functions

in EXAMPLES 5 and 6, their graphs arq given in Figures 3

and 4 respectively, where v(t) = (-2/3)t + 10 for 0 < t < 15

4 and g(d) = (-2/3)d + 10 for 0 < d < 15.
.

5 t 15 d

Figure-4. Graph of function g.,Figure 3. Graph of function v.

The fog th'at may -hav'e hung ovpi EXAMPLES 4, 5, and 6

should now be clearing and one should begin to see the

simil-arity..between these three, examples'. 'Tor all three
,

examples, we have the same function and the same dotdin,

but each with different labels:

EXAMPLE 4: w() ='(-2/3)2 + 10, where 0 < 2 < 15.

EXAMPLE 5: v(t) = (-2/3)t + 10, where 0 < t < 15.

EXAMPLE 6: g(d) = (-2/3)d + 10, where 0 < d < 15.

QUESTION: Since the solution to EXAMPLE 4 is 75 square

feet and each example has the same function (with different

labels), can we assume that EXAMPLES 5 and 6 will have the

'same numerical solution but with different labels?
4



To answer this quetion, we will go back:and solve
EXAMPLE 4 by a different method, where we do not use the

area of'a triangle formula. This will enable us to also
solve the two other examples.

3.3 Approximate Solutions of EXAMPLES 4,.5e and 6

? We will start by first approximating the area of the

triangle in Figure 2 by a sum of areas of rectakgles.

First we divide (0,15) into 15 subinterv-als of equal length:

each of the form (1-10), where ii= 1, 2, 3,
. . . , 15 as

shown in Figure S. Over the ith subinterval, (1-1,1), we

\
4

' polk.
0 1 2 r3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5. Subdivision of [0% 15).

construct the ith rectangle whose "length" is the length

of the ith subinterval and whose "width" is determined by

the right endpoint i, as shown in Figure 6. The area of

--10

1

st
rectangle

2nd rectangle

.

.th
rectangle

4

0 1 2 15

Figure g.' Approximation of area ortriangfle.

the'%itWrect'angre'is the product of the width w(i) and the

length of the ,ith subinterval, namely (i - 1)- = 1, or

1

4



P 4:

(A) w(i)1 = [(-2/3)1..+ 10) (1) \

for i = 1, 2, 3, . , . , 15. Since there are 5 such tec-

tanles, then the areaof all of these is

L5 15
(B) y = F [(-2/3)i + 10)(1), as w(i) = (-2/3)i 4-10,

i=1 i=1

(C) = 70.
7 .

Bence, t e area of the triangle is approximately 70 square

feet.

Let's- o bacR and loOklat. (A), (B), and (C) in terms

of EXAMPLE and Figures 3 and W. Changing the labels, we

have the ap oximate distance over the ith subinterval

represented.%

!(A') v(i) 1 = [(-2/3)i + 101(1),

whete v(i) = C -2/3)1 + 10] is the velocity over the ith

subinterval and l'represents 1 second of,elapsed time.

Notice that we .re assuming that the velocity is a constant

value, ovtr the i h subinterval.' rn turn,

,

15 15
= (-2/3)1 1 (10).1 ,

1=1 , 1=1

15 15 .

=,(-2/3) 1 1 + (10) y 1,
i=1 i=1

= (-2/3(15) X15 +1) 10(1.5),

i = n("1) and 1 1 =

d=1 .2 1=1

(B')
15'

v(i)
i=1 1

1

is an a. roximati n to the distance traveled over, the 15-

second time period This hum works out to be

10 -" ( 1

6



(EI)

ti

,15
V(i)1 = 70 ft.

i=1 -e
, .

1

I

Exercises
.

3. State what (A), (B), and (C) repreent wits the appiopriate labgls

when the width function w is rePlaced,by weighs function g of

Example 6.

4. Approximate the area of the triangle ih EXAMPLE 4 by dividing the

interval 10,15r-into 45 subintervals. Use the left endpoint

- 1)(1/31 to determine the height of each rectangle.

5a. Interpretthe results of Exercise 4 above in terms of EXAMPLE 5. ..
..

6

.b. interpret the results of Exercise 4 above in terms of EXAMPLE 6,
.

. .

. Since .70 (with the 'proper label) is an approiimation

for the solution of XAAPLES 4, 5, and 6, lets solve all

of these problems by a more general method. Let
f (x..) = (-2i3)x + 10,,where 0 < *ic 15, 'where function f

, represents any ,-one
e
of the three functions in EXAMPLES 4, 5,

and (6. Generalizing Figure 5, we divide [0,151 into n

, equal lehgth subintervals (each of ength 15/n) and denote

the ith subintervai. by I( 1- (1)(15/0) for "

i = 1, 2, 3, . , n as sjiowp in Figure 1.7.

.
1 , 4 i

CI, 15 2Lifil.,,
p ' n'

.

I I
r I Is,

m-i)A M(A 15

n,n

.
.Figure 7. Subdivision of4[0, 15) into n equal length subinterval.:-

.,,

.
...Al,

t
.

..
....,+.1

Consider then the product

D) f [(i) (15/n)) (15/n), .

7
e



0

rwhiArmay be interpreted in the fallowing three ways:

1. For EXAMPLE 4, (D) is the area of the.ith rectangle

with width fEL1)(15/n)) and length (15/n), where the

width is determined by the rightendpoint, (1)(1T/n),

of the ith'subinterval.
-1

'. For EXAMPLt 5, (D) is the approximate distance

traveled over the ith subinterval of time length (15'n)

and where the velocity, f((i)(15/n)1, is constant/over

the interval and it is determined by the right endpoint,,

(0(15/0', of the ith subinterval.

3. For EXAMPLE Pris:the approximate work done over

the ith subinterval of distance (15/n) and where the -

force, ff(i)(15/n)), is constant over the interval ad
. /

A. it' is determin40 b1 the right erfdpoint,'W(15/n), Of
4 _

the ith subinterval..,
s

Adding up all n of these,producy
.

-s,.we then have\ ,..'
..

N \
n 4 4 %

(E) 1 fl(1)(15/n))(15/0'= 1 r(t2/3)(1)(15/n) + 10)(15/n),
. 1.1 . 1=1

- r S
n

=

1:1

[(-101/r01+
,

10)(15/n),
' ...1.

...
1

, .
. . .-

n.
. . _

? 1 [(-150th2) +
I

150/n] ,

. 1=1
.. .

1 1 , . 2' n
`.- (-)50/n W/ (0). .

1.:=1
4. - 4..

0 -. . .
, ri

t.. J. (150/n)[ / (1
4 4. 4 1 = 1 '''t" ....

. . !

. . 2 (n)(n+1)-
.=, (.-150/n )( ) 4-, (150/n)(n),

.----

c. '...or . . ! '.

.

.

.

(F) E ff.(1)(15/n)1(15/n) = (-7)(1 +.1N) + 150. ;
1=1

.

, "- --

1,0
A

8 \

.

4



0

Notice that the expression in (F) is a function only
of n, the number of subintervals of (0,15). By letting nt
take on specific values in (F), we obtain various approxi-

mations to the solutions of EXAMPLES 4, 5, and 6. For the
case that.n = 15, we obtain the numerical value of 70, thee
result we had previously seen.

Returning-to (F), we will let n-,10,4 so that

)n
4

(G) lim 1 ff ( 1) ( 1S/n) ] (15/h) = limf(-75) (1 + 1 /n) + 1501,
h-+0,1=1 n+.,,

= (-75)(1) + 150,

= 75.

Notice that the 75 is the same numerical value that we had
Rrevieously'obtained,(see page 4) for the area of the tri-

angle when we had used the specific formula for determining
the area of a triangle. Notice also, that we hdve now'.

answered the question that was posed on page 4.

Exercises'

6a. Find the value of the expresgion in (F) for the case that

n= 25; n = 75; n = 300.

b. Why is each successive value of m a better approximation than

each previous value of n7

7. The sum of products in_(F) was determined by using,the right.

endpoint, (i)(15/n), of each subinterval.

a. DeterMine a similar sum of products by using the left endpoint,

(i - 1)(15/n), of each 'subinterval. Simplify the result as much

as possible.

b. In your results of 7a above, let n = 25; n = 75; n = 300..

c, In your rqgults of 7a above, let-n+.D. Then compare the result '

with (G).

1.

1.3

9



8, As in Exercise 7 above,

a, Determine a sum of products by using'the midpoint of each sub-
.

interial. Then simplify it as much as possible.

b. In.your result& or8a above, let n = 25; n = 75; 300.

c. In your results of 8a above, let nr40,, and compare the reslit with

(G) .

...1:00

4. .RIEMANN SUMS AND TH. DEFINITE INTEGRAL

4.1 Definition'of Riemann,Sum

We have been looking at some special case's of what is

called a Riemann Sum and the definite integral. Let us

now look'at these more generar concepts.

Let f be a function defined on a Closed interval [a,b]

Let a = xD and b = 7;.1 and select (n-1) points x1, x?, x3,

, x
n-1

between x
0

and x
d

ri4ko that a = x
0
< x1 < x

2
<

< xn_l <'xn = b. These (n+1) points are said to

partition the interval (a,b) into n subintervals, where

the ith subinterval is denoted by
1 1

[x1 . ,x.], or i = 1, 2,

3, . . , n. These n'subinterals are said to form a

Partition P of [a,b] . See Figure,B.'',

a

x2 x3 xi

Figure 8. ApartItion P of [,b].

xn-2 xn-1
xn

De*"tingthe?.-engthoftheithsubIntervalbY6x.1' we have

(H) Axi = xi - xi_i

For each value of i, seleok one point ci from the ith sub-

in.terval, so that xi_i < ci < xi. We now.form the product

10
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4

a'
(I) .f(Cd'AX1 ,

and then the sum of'these n products,
,

. n

(J) I f(cd'Axi
1

1.1

This sum of products(J) is called a Riemann Sum of the

function f over [a,bl for the partition P and the

-choice of c . It. should be noted that a Riemann Sum

deperids upOn

1. the function
.

12. the closed interval La,b] over which f is defined,

3. the partitiori P of ta,b1, where each subinterval

need not be of the same length, and

4. the point ci selected from each' subinterval

[xi
x ).

-11 i

Returning to the Riemann Sum in (E), we see that

1. the function f is given by f(x) =(-2/3)x + 10,

2. [0,151, is the closed interval over which f is

defined,

3. the partition Pof [0,1,S] consists of n sub-

intervals of equal length, and

4. the point ci = (i)( ,15 /n) is the right endpo.knt of

each subinterval.

\\Exercises\9. Set up and simplify a Riemanh Sum for the function f(x) = 2x + 4

over [1,$), using a partition with subintervals of equal length

and selecting the left endpoint of each subinterval for

In'Exerci,se 9 abovl, let R take on various positi4e integer

aIues.

11. I erpret the numerical- results of Exercises 9 and 1'0 above in

terms of EXAMPLES 4, 5, and 6.

4.

11



4.2 Definition of the.Deeinite Integral

In a partition 1 of [a',b), the length of the longest.

.subinteiwal is called the norm of ,the partition P, and is

denoted by HP!! . egr the Riemann Sum in (E), since each

sqiineerval is of the same length, then HPH = (1'5 /n).'

We come to one of the main topics of this module, the

Riemann,--or definite inteeral,

Definition: . (1) Let f be a function defined over (a,b).

(2) Let P be a partition of (a,b) having n subintervals,

where Lxi is the length of the itJ subinterval and ci

any point in the ith subinterval. (3) If there exists a

number L such that .

lim f(c.):Lx. = L,
11P11.,0 i=1 I

..then L is called the Riemann Integral or thebdefinIte

integral of f over (a,bl and is denoted by f f(x)dx; i.e.,
a

(b n

L = I f(x)dx = lim f(c.)Ax. .
a 1IP11.+0 1=1 I I

Returning to Riemann Sum (E) or (F) and the partition

P associated wi,,th this Riemrin Sum, we have 1IPII = (15/n).

Since HP114.0 as ri-m=, we then have (G) which now can be

written as

,15 n
(K) 75 = ((-2/3)x +,10Idx = lim fi(1)(15/n)I05/0.

0 ri+0. i=1

Exercises o

12. In the resuits of Exercise 9 above, It n-o:cci to find the value of

18(2x + 4)dx.

5

13a. Write a Riemann Sum to approximate-the value f (3x + 5)dx.
2

itr

12



^,

b. Find the value. of J (3x + 5)dx by using the results of 13a above .

* '2

4r-c. Interpret the-resbltS of 13b above, in terms of, EXAMPLES 4, 5,0

and 6.

4

14a. Find the value of f -(51,+ 18)_dx.

b. Find the value of 1 .(x2 +.4x +
:1';

S. THE TUNDAMENTAL THE0124M OF,CALCULUS

QUESTION: Doesone always have to evaluate a definite

integral by calculating a limit of Riemann Sums? The

answer to this question is.usually NO. For funb ctions f

that are,continous over" (a,b], the value of 1 f(x)dx can

often, but not/always, be determined by the Fundamental
a

Theorem of*Calkulus. We will present this theorem in Sec r.

tion 5.3, but/before we look at it we will look at some of

its underlyi g pTinciples in EXAMPLES 7 and 8.

S.I A Defi ite Inte ral with a Variable End oint
15

In (/ , we saw that I (( -/3)x + 10]dx = 75. We now

consider more general fo0rm of this integral, namely

(L) [(-2/3)t + 10]dt,

o

whe we will assume that 0 < x'< 15. 'Note that in (L),

w have changed f(x) = (-2/3)x + 10 to .f(t) = (,-2/3)t + 10;

ad we considered g[(-2/3)x + 10]dx, then we would have

used'x for two different purposes, namely, (1) to denote

the right endpoint Qf (0,x], and (2) to denote the inde-

pendent variable of the function f.

4

Exercises

If x = 0 in (L), whatfis the value of15a. ((-2/3)t + 'Mt?.
1110

b. If x = 15 in (L), what is the value of ((-2/3)t + 10]dt?

. 13
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fx

c. If x = 10 n GL), what is the value of I 4(-2/3),t + 10]dt? .

10 --Alt

I

'16. Interpret (( -2/3)t + 10]dt in terms of EXAMPLES 4, 5, and 6.

0

By letting xl 0 < x < 15, take on various values in

(L), we obtain one and only one definite integral, so that

we can consider the expression in (L) to be a function of
x, namely

x
(M) F(x) = [-2/3)t + 10]dt ,

'0

where 0 < x < 15 and 0 < t < x.

Ir

S.2 Antiderivatives.,and the Definite Integral

EXAMPLE 7. Find another representation of the function F

that is represented in (L).and (M).

Solution: Since F(x),is a definite integral with lower

limit 0 and upper limit x, we will find its value a& a

limit of Riemann Sums. By dividing [0,x] into n equal

length subintervals, then Gxi = x/u and the ith subinterval

is- ((i 1)(x/n),(i)(x/n)), for i = b, 2, . . . , n.

tSelecting she right endpoi t of each subinterval as ci,

i
then c = (r)(x/n). See F gure 9.

Figure 9. A partition of ID, x].

14

18



For this partition P of-[0,x] and for f(t) [(-2/3)t + 10],

the Riemann Sum is

(N,)

.

f(ci ).Ax = [(-2/3)(c1) + 10](4x ),
1=1.- i=1

n

= [(-2/3)(1x/n) + 10)1(x/h),
1=1

n

[(- 2x2'/3n )(1) + (10x/113(1)1,
i=1

n
= (12x2/3n2)[ (1) + (10x/n)[ (1) ,

i=1 1=1

(_;x2/3n24(n)(2n+1)]
+ (lOx /n)(n),

= (-x
2
/3)(1 + 1 /n) -+ 10x, A

where thte value of the Riemann Sum in (N) is a function of

both x (the right endpoint of [0,x]) and n (the number of

equal lengthed subintervals of [0,x]). Since HP11 = (x/n)-0

as ri-*00, then

x.

F(x) = j [(-2/3)t + 105ift,

0

n
= lim f(c,)*Axi,

111311-4-0 1=1

lim((-x2/3)(1 + 1 /n) 4- 10x],
n-4=

(-x2/3)(1) + 10Z,

= (-x2/3) + 10x.

Hence, another, representation of the function F is

(P) F(Z) = (-x2/3) + 10x:

Upon investigatiAg some of the properties of this

function F in (P) and the given function f; we see that

15
1 4



.1

'4) r(x), = j7[1-x-/3) + 10x) = (-i/3)x + 10,

;

2) f(t) = (-2/3)t.+ 10, or f(x) = (-2/3)x + 10.

Here we see an extremely important concept, namely that

,f(x) = '(-x-/3) + 10x is an antiderivative of

.f(x) =(-2/3)x + 10; i.e.,
fx

\\ F'(x) = f(x),--whenF(x) = [(-2/3)t + 10)dt.

Note. Remember this fact when we investigate the Funda-

mental Theorem of Calculus in Section 5.3.

Exercises

17. As in EXAMPLE 7, find another representation of the function F

in (M) by letting ci = - 1)(x/n), the left endpoint of each

subihterval. Compare this result with (P).

18. As in EXAMPLE 7, find another representation of the functiori F

in (M) by the following method:

a. In Figure 9, let G(x) =the area of the trapezoid whose two

parallel sides are 10 and (-2/3)x + 10 units in length and whose

base is x units in length.

h. Use the area formula for a trapezoid to determine G(x).

Compare G(x) with the results of (P) in EXAMPLE 7.

19. As in EXAMPLE 7, give another justification of the function F

in (P) on the bast's that velocity is the derivative of a posi-

tion function.

Before looking at the statement of the Fundamental

Theorem "of Calculus, we will consider another example.

EXAMPLE 8. Find the distance traveled from t = 2 to t = 8

seconds by a car whose vglocity is

v(t) = (-2/3)t 10 ft/sec.

1/4

20 .
$

t

4

16
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Solution: As'a definite integral, this distance can be

represented as [(-2/3)t + 10]dt: (Take a moment to con-
2 x

seder why this is so.) Since F(x).= [(:2/3)t + 10]dt is
A 0

,tha distance the car travels Over [0,x), then

S ,

1) F(8) = I. [(-2/3)t + 101dt is the distance it
0

I

travels over [0,8], and

F(2) = [(-2/3)t + 10]dt is the distance it
0

travels over [0,21.

Since we are concerned with the distance traveletover

[2,8], we then seek F(8). - F(2). That is,

is
[(-2/3)t +7101dt = F(g) - F(2), -.

But ip (-F) we saw that F(x) = (-x/3) + 10x, so that

2

.[(-2/3)t + 1,O]dt = ((-8
2
/3)+10(8)U- [(- 22

/3)+10(2)];

= 40 feet.
.

S.3 'itatement of the Fundamental Theoiem of Calculus

We are now ready to state the Fundamental Theorem of,

Calculus.

t

FUNOAMEN1AL THEORiM OF CALCULUS

If (I) function r is continuous over (a,b] , and

(2) F(x) is an antiderivative of f(x) over (a,h),

then

r
f(x)dx = F(b) F(a).

a,

I



's

'Returning to EXAMPLE 8, we see J-haf'w67hAv,e actIolly

use"athe Fundamental Theorem of Calotitit:16;ene sO/utton

of the.problem,-as. 0

1) v(t), = (-2/3)t + 10 (or, f(1.1.14*2/4VZ 1110'is

vcantinuous over (2,8) 'tis funct. ion

f) l'a linear'funct-1611.
:bs

2) F(t) (-t
2
/3) 10't (or,. F(x)

is an antiderivative of v(t) =

f(x) = (-2/3)x + 10) over (2,8).

Hence, the two parts of the hypothesis of the vlieOPR''1f,ve'

been satisfied. In conclusion then, , r

(Q).
12

F(2) = 44.01 0:

8

-((-2/3)t 10)dt = F(8)

0

the same result that we ha previously obtained. 0 .

/.
-

6

Exercises

20. In the second hypothesis of the Fundamental Theorem of Calculus,

' it is staled that F(x) is any antiderivative of f(x) ovr4b,b1:.

a. tvaluate (Q) using (-t
2
/3 + 10t + 5) as an antiaerivativeN !

Evaluate (Q) using ( -t2/3 + l0t - 4/3j as an antideritfve.

c. Evaluate (Q) using (-t2/3 + 10t + k) as an antiderivative,

where k is any constant.

Return Lo item,(K) anq Exercise 14 and evaluate each of these

definite integrals by using the Fundamental .Theorem of Calculus.

22. Use.the Fundamental Theorem of Calculus to evaluate each of the

following definite integrals:

a. (x
2

+ 2x + l)dx

2

b. f5(x.2)dx + 2f (x)dx (I)dx

5 5

2 J2

S

4
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d. [f5( 141 12x + .A

2

.
x + 1)2dx

e.

f25

(x + 1)dx.

2

23. Explain why the Fundamental Theorem of Calculus cannot be used
o

to evaluate the folloling integral:

6

(lix-)dx.
1

WARNING: Do not attempt to use the Fundamental Theorem of

Calculus unles, all conditions of the hypothesis have'been

'satisfied.

24. Evaluate each of the following by using the Fundamental Theorem

of Calculus:
/

a.

C.

9

4

f_(-3x
2
+ 5x - 7)dx

C(I/x3,+ x-2)dx,
a

8

b.
f(x + lix2)dx°

4

d. 19Ux2 +.1,)/x2]dx.

25 Find the area of the region bound by the x -axis and the

parabbla y = 6 - s x
2

.

26. Let v(t) = t
2

3t + 2 be the velocity function of acdir when

0 < t <41,"Where the velocity is measured in, ft/sec and the

time t is measured in terms of seconds. Find the distance it

travels. WARNING: What does a negative velocity indicate?

27. A bag of salt originally weighing 144 giounds.is lifted upward.

The salt leaks out uniformly at a rate so that half of the salt,

is lost when the bag has been lifted 18 feet. Find the work

done in lifting the-bag this distance,

19
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6. CONCLUSION

- The Fundamenta1 Theorem of Calculus-has
s long and

. . . .

.fascinating. history behind it.. Prior to its development;

Mathematicians worked for centuries with the derivative,

the anI'd rivative, and sums of products:, Isaac Barrow

..........9-(1630- 77), a teacher of Isaac Ni-wtan (1642-1727), di's-

covered and proved the Fundamental Theorem of Calculus,
although his method and terms were quite different from
those used in this module. Using Barrow's results, both

Newton and Gottfried Leibnitz (1646-.171E0, working inde-

pendently of each othe'e, developed many of the concepts
of ealcillus, although much ciff the "calculus that we know

and'use today is attributed to Georg B. Riemann (1826-
1866),

In this module, we have solved area, distance, and

wort problems by the'Fundamental.Theorem of Calculus. It

can also be used to.solve pioblems dealing with the volume

of a solid of revolution,4arc length, moments, center of

gravity, hydrostatic force, product cost, growth (or decay)

of a substance, etc. Good luck on your usage of this

remarkable tool!

1

7. ANSWERS TO EXtRCISES,'

I. The formula, distance = velocity x time, can be used only when

the velocity issa constant, which is not the cast here

2. The formula, work = force x distance, can be used only when the

force is a constant, which is not the case here.

3. (A") 9101 = [(-2/3)i + 10)(1) is the approximate work done

over the ith subinterval, where g(i) is the constant force over

the ith subinterval and 1 represents 1 foot, the'Iength of the

ith subinterval.

.(13"). 15

g(i)1 represents an approximation of the work One in,,/
i=1

lifting the bag of salt a distance of 15 feet.

021
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(C") 70 represents the numerical approximation of the work

done in terms of foot-pounds.

4. The length of each subinterval As (15/45) = 1/3 units, so that

the left endpoint is 410 - l)(1/3), for i = I, 2; 3, . . . , 45.

The area of the ith rectangle is w[(i -1)(1/3)1(1/3).. The

area of the 45 rectangles is

45 4
. I w[(i 1)(1/3))(173) = 76 2/3 sq. ft.
i=1

5a. The approxi'mlie distance trave4qd is 76 2/3 Peet.

b. The approximate wok dorie is .76 2/3 foot-pounds.

6a. If n = 25r then (-75) (1 + 1/25) + 150 =.72.

If n = 75; then (-75)(1 + 1//5) + 150 =NP3.

If n = 300, then (if5)(1 + 1/300) + 1504= 74 3/4. .
b. In terms of the area of the triangle, as n becomes larger, there

are more rectangles being used, with these rectangles forming a

"closer fit" to the shape of the triangle.
a '

7a.

I f[(i 1)(15/0)(15/n) = F ((-2/3)(i -,:1)(15/n) + 10)(15/n),
1=1 1 =1 "

= 75 + 75/n.

b. If n = 25, then 78.

If n = 75, then 76.

If n = 300, then 75 1/4.

c. 1im(75 + 75/n) = 75, the some numerical value that was obtained
n-x

in (G). ,

8a. Since the midpoint of the ith subinterval is given by

[(I .1 1)(15/n) + (i)(15/n)1/2, or, (i)(15 /n) (15/2n), so

f(0)(15/n) - (15 /2n)) (15 /n), which = 75 for all values of n.
i=I

b. If n = 25, then 75..

If n = 75, then 75.

If n = 300, then 75: 21



A

c. lim(75) = 75, the same numerical value that was obtained in (G).
rr00.)

9. Since the length of each .subinterval is (8 -1) /n = 7/n, then

= 7/n and the left endpoint is ci = 1 + (i - I)(7 /n), so that

f(I + 1)(7/n)1(7in) = 49(1. - 1/n) + 42.
is

10% ; = 7, then 49(1 - 1/7) + .42 = 84.

ekIf n = 49, then 90.

etc.

II. Consider the graph of f(x) =/2x + 4 ovee ii,a].

EXAMPLE 4: If n = 7, then the area of the trapezoid in the graph

'is approximately 84 square units.

EXAMP15: If n = 71 then from t = 1 to t = seconds, 84 feet

is the approximate distance traveled by a car whose velocity is

given by v(t) = 2t + 4 feet/sec.

-EXAMPLE 6:
.

If n = then from d = 1 to d = 8 feet, 84 foot-
.

pounds is the aaroximate work done in lifting a bag of salt

whose at distgnce d tkgiven g(d) = 2d + 4.
:4 .

12.

f8
n4. '01 at

(2x + 4)dx = fJl t ('.-,1)(7/A).1(7/4
1 . Pill

-
= ilil f(1 ± 0,-1) (7/n)] (7in)

'

+ 42] ,

4P , n

.

13a. Partition (2,51 into h equal lengthed subintervals, and select

c. as 'the right endpoi'n't. Then Ax. = 3/n and c.
1

= 2 + i(3/n),

for i = 1, 2, 3, . . , n. A Riemann Sum fOr f(x) = 3x +,5,

over (2,51 is.

-

f[2 + (i)(3/n)1(3/n) = (17/2)(1 + l/n) + 33.
]=1

' (3x 5)dx = lim [(27/2)(1 + I/FT) + 33] - 93/2:
rro40

4

22

4



a

' .

c. EXAMPLE 4: 93/2 sq. units is the area of the region bound by

the lines x = 2, x = 5, y = 0 and y = 3x + 5.

EXAMPLE 5: 93/2 feet is the distance traveled by a car wtiOse

velocity is v(t) = 3t + 5 feet/second, when 2 < t< 5.

EXAMPLE 6: '93/2 foot-pounds is the work-done in lifting a bag

of salf`from d'= 2 feet to d ='5 feet, where the weight of the

salt is g(d) = 3d + 5.

14. Using the right endpoint of.each equal lengthed,subinterval,

a.

(5x + 18)dx = lim f(-2 + (i)(8/n)1(8/n)
'-2 r140. i=1

= lim(90)(1 + )/n) + 48 = 138.
n-)=.

b. Using the right endpoint of each equal lengthed-subinterval,

(

L4 (x2 + 4x + 5)dx = lim f(-1 + (i)(5/n))(5/n),
n+.0 .i =1

= lim[(125/6)(141/n)(2+1/n) + 25(1+1/n) ± 10]

= 230/3.

15a. 0, as Axi = 0 for all values of i.

b. 75, by (G)v

c. n

[( -2/3)t + 10]di = lim I ((-2/3)(i)(10/n) + 10)(10/n),
111b

= lim((-100/3)(1 + 1/n) + 100]
n-Ko

= 200/3.

'16. EXAMPLE 4: 200/3 is the area of the region bound by the lines,

x = 0, xm 10, y = 0, and y = (-2/3)x + 10.

EXAMPLE 5: 200/3 is the distance traveled by a car whose

velocity is v(t) (12/3)t + 10 feet/second when 0 < t < 10.

EtAMPLE 6: 200/3 is the work done in lifting-a bag-of spit from

d = 0 to d = 10 and where the weight of the-salt is given by

g(d) = (-2/3)d 4-10.

.

27
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17.

F(x) = I [(-2/3)t + 10]dt

0

= lim [(-2/3)(i -1) (x/n) + 10](x/n)
i=1

= lim [(-x2/3)(1 + 1 /n) + (2x
2
/3n) + 10x]

n-K0

= (-x2/3) + 10X, which is the same as (P).

18a.

10 I ength =:(-2/3)x + 10

x

b. G(x) = (1/2)(x)[10 + (-2/3)x + 10], or, G(x) = (-x2/3) + 10x,

which is the same as (P).

19. In (It), let f(t) = (-2/3)t + 10 be the velocity of a car over

[0,x]. Since the velocity is the derivative of a position

function, say F(x)' = (-x2/3),+ 10x, where F'(x) = (-2/3)x + 10

which = f(x). OF
1

20. a., b., and c. F(8) - F(2) = 40.

21. (K)

[(-2/3)x + 10]dx = F(15) - F(0), where F(x) = (-x
2
/3) + 10x,

0

(14a.)

=75.

(5x + 18)dx = F(4) - F(-2), where F'(x) = (5x
2
/2) + 18x,

-2

= 138.

(14P.)

1

(x + 4x + 5)dx = F(4) - F(-1), where F(x) = x3/3 + 2x2 + 5x,

_ = 230/3.

22a. 63; b. 63;' c. 63; d. (27/2)2; e. 677/2.

24



23. The function f(x) = 1/x2 is not continuous over [-I,6].
4 ,

24. a. -62 1/2.

6. 24 1/8.

c. Did you heed the WARNING in Exercise 23 above?

d.

25.

Area = 12 (6 - x - x
2
)dx = 125/6 square units.

J-3

26. Distance = ](t2 3t + 2)dt + 12 -(t2 - 3t + 2)dt

+ j3(t 2 - 3t + 2)dt = 11/6.

27. Since slope = (144 - 72)/(0 - 18) = -4 and the vertical

intercept is 144, then g(x) = -4x + 144.

Work = (-4xt+ I44)dx = 19/0 ft-lbs.

8. MODEL EXAM

la. Set up-and simplify a Riemann Sum to a pproximate the

area of the region bound by the lines x"= 2, x = 5,

y-= 0, and y 2x + 3.

b. In the simplified Riemann Sum in la.abbve, let n4.00.

c. Set up the definite integral that will yield the area

of the region in la. above.'

-d. Evaluate the definite integral in lc. above by using

the Fundamental Theorem of Calculus.

2. Suppose that a particle travels along a straight line

and its velocity is given by v(t) = t2 + 8t + 17

feet/sec. Find the distance it travels over [1,5) by

(a) using the limit of a Riebann Sum, and (b) by using

the Fundamental Theorem of Calculus.

3. Consider the following limit of a Riemann Sum:

25
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=

, ,

lim
n

({(1 + (1)(6/n)l- + 5(1 + (1)(6/n)] 2}(6/n)).
n-,-= 1=1

Write this as a definite integral and evaluate it by

using the.Fundamental Theorem of Calculus.

4. Evaluate each of the following y using the Funda-

mental Theorem of Calculus:

4
a. 3 ..f. (x 3x + 1)dx

-2

c. C4(x-14'+ x)dx.
.1/2

5

b. 1 (x x)dx

An

S. According to Hooke's Law, the force F requirQd, to

stretch a string ; units beyond its natuoral length' is

F(x) = kx, where k.is called the "modulus of the

spring." Suppose that it takes a 2-pound force to

stretch a spring from IS inches (its natural length)

to 20 inches, so that F(S) = k(S) = 2, or k = 2/5.

With the same spring, what is the work required to

stretch the spring from IS inches to 21 inches?

9. ANSWERS TO MODEL EXAM

Ia. n

1 {2(2 + (1)(3/n)1 + 3}(3/n)!
1=1

b. 30.

c. .

(lx + 3)dx.

2

d. 30.

n

2a. lim 1 {(1 + (i)(4 /n)]2 + 8(1 + (i)(4/n)) + 17}(4/n) = 616/3 .
m+0 1=1

.

3 0
(

26:
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b.

r5

b. + 8t + 17)dt = 616/3 feet.

I

3.

f7
, !

2 + 5x - 2)d* = 222.

4a. 48.

b. 82/15.

c. f(x) = x/2 + x is not continuous over [-I/2, 3/4).,

5. [(2/5)x]dx = 36/5 inch-pounds.

0

..

4

sl

ala

19
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ATMOSPHERIC PRESSURE IN RELATION TO
. .

HEIffliT AND YEMPERATUPE

7 ---

1. iNTRODUCTION

'Atiospheric pressure on the' -Earth's surface is due

to the weight of the atmosphere above. Imagine a verti-

_ qolumn--T4hose cross section is an inch square and

:which extends upwards from the Earth's surface without

bound. (See Figure 1.)

Figure 1.

The weight of this column in pounds (as weighed in a

vacuum)is numerically equal to the atmospheric pressure -

in pounds per squAre inch at the surface. This is so

since, the prepsure at the surface is the force per unit

area due to the weight of the atmosphere. More general
ly, at,a height x above the Earth's surface the atmos-

pheric pressure is numerically equal to the weight of

that portion of the air column above height x.

We make use of this simple observation along with

certain well known faCts'about ideal gases to create

two matheniatical models of atmospheric pressure; The

first model is somewhat simplified since it does not take

temperature variation with altitude into account. its

introduction_serves the purpose of preparing the way for

the study of the more complicated second model which does

take temperature variation into account. We apply this

second model to study, conditions under..which the_atmOs-,
..zto

phere is unstable.

316

2. THE SIMPLIFIED MODEL

,

2.1 Derivation of the Formula

Consider the column of atmosphere as described in

the introduction. Let P
o denote the weight of this col-

umn in pounds. For any_x 2, 0 let P(x) denote the atmos-

pheric pressure in pounds per square inch, x inces above
0

the Earth's surface. Likewise for any x > 0 let w(x) de-

note the weight of that portion of the column, in pounds,

from the Earth's surface to the height of x inches above
the surface. Figure 2 illustrates the relationship be-

,tween P(x) and w(x) . .

.9A

has weight P(x)-

has weight w(x)

Figu0f2.

The folatwing equations are now clear.

M!'s
P(0) = Po'

,..' and .

,

(1) T(x) = Po I w(x) !for any x 0.

Observe that as functions of x, P is decreasing and
w. is increasing. Let us suppose that the'functions P and
w are each continuously,differentiable.

If we were to weigh samples of air at various alts;

tildes we-would normally find that for a fixed volume,

samples of air taken at low altitddes are heavier than

'samples,tAken at higher altitudes. For any x 0 let .

p(x) denote the weight of a cubic inch of air in the

column qt height x inches above the Earth's surface. We

shall ¢all p(x) the density of the atmosphere at height x.

4
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Ordinarily p is a decreasing function in x. Let

po = (AO), the density of air at the surface of the

column.

(2) '

Next we assert that for any x > 0 '

d
aT w(x) = wi(x) = p(x).

To see this, first observe that for pnyx >'0 and

Ax > 0, w(x + Ax) - w(x) is the weight in pounds of the

air in the coldui from'height x to height x + Ax. So

the quotient

w(x. + Ax) - w(x)
Ax

is the average density of the air in pounds per cubic

inch in that portion of the column:.
.

Thus

w'(x)
lim w(x + Ax) w(x)

Ax

represents the density of the atmosphere at height x,

thus justifying Equation (2).

Next, differentiating'both sides of Equation (1) and

applying Equation (2) we obtain

P'(x) = -P(x) for any x.

We now introduce two assumptions used to construct

the simplified model:

(a) the chemical composition of, the atmosphere is

uniform and independent of the height. (The

ratios of the various gasses making up the

atmosphere are independent of height.)

(b), Tthe temperature of the atmosphere is indepen-

dent of height.

If we apply these assumptions along with the assump-

tion that the atmosphere is an ideal gas we may invoke'a

variant of Boyle's law which states that the density of

(3).

St 3

a gas is proportional to its pressure. So for any x > 0

P(x) p(x)

Po Po

or

(4)
p(x) = 110- P(x)

P
o

Combining Equations'(3) and (4) yeilds the equation

-P
P'(x) = TT-1 P(x)

ro

whose solution is evidently

P(x) = Poexp for any x > 0.
Po JLP4

(5)

Equation (5) is a formula relating atmospheric pres-
sure with height. For the sake of practicality we modify

.(5) so that x is in unit; of feet rather than inches.
Thus (5) yeilds

(61 e. P(x) ='PoeZp for x in units of feet.

2.2 An Example

Let us now apply Formula (6) based on the assumptions
of Section 2.1.

Given the assumptions of this gectipn and that

"Po = 14.7 lbs./sq. inch and po = 4.34 x 10-' lbs./cu.

inch, find the atmospheric pressure at 20,000 feet above
the Earth's surface. By (6)

P(20,000) = (14.7) exp
L

12)(4.34x10-5)
14.7 (20,000)

= 7.24 lbs./sq. inch.

09
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Exercise 2.1

Given the assumptions'of this section and the values of P
o

and

po as in the example above, at what height is the atmospheric pres-
.

sure 1/2 of its value at the surface?-

Exercise 2.2

Given the assumptions of this section, suppose that at the

Earth's surface the atmospheric.pressure is 15.00 pounds per square

inch'ile at a height of 1,000 feet aboVe the surface the atmosphler-
.

ic:pressure is 14.47 pounds per square inch. Find po.

Exercise 2.3

Given the assumptions of this section and the values of Po and po in

\Example 2:2, ,assume that the Earth's _radius is 4,000 miles. What is

the tptal,,,weight of the Earth's atmosphere in.pounds?

THE MORE COMPLICATED MODEL

3!'1l'eo.Derivation of the Formula
-4,1k

Let us now delete the assumptions that atmospheric

temperature is independent of height.

We shall measure temperature on the absolute scale

of the Kelvin system. Recall that the Kelvin and the

Celsius, systems are related since an increase in temper-

ature of one degree K (Kelvin) is identical to an.in-
ow

crease in temperature of one deg le CelsiuS, and each

correspond to a temperature increase of 1.8,degrees on

the Fahrenheit scale. However, under the Kelvin system,

004 K is absolute zero, water freeies at 273.1° K, and

water boils at373.1° K., To convert from the Celsius to

the Kelvin system, simply add 273.1.

The relationship betweentemperature orthe Fafiren-,

heit and Kelvin scales are given by the equations

S

40
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.1

F = 1.814 -- 459.58

and

K = (F + 456.58)/(1.8)

where F and K are the temperatures on the Fahrenheit and

the Kelvin scale respectively.

FOr any x > 6 let T(x)denote the temperatufe in

degrees Kelvin of the atmosphere at height x in inches

above the'Eartli's surface. Le%To = T(0), the tempera-
.

ture at the surface. In Section 2 w applied Boyle's law
of ideal gasses to,obtain Equation ( ). In this section

we complicate the model by superimposing a variation of

Charles's law of ideal gasses which states that the gas

density varies inversely with temperature when measured

on an absolute scale, such.as the Kelvin scale. Conse-

quently we must introduce the factor To/T(x) tothe right

hand side of Equation (4) to obtain

(7)

Hence

P Tp(x) o o P(x)
P0T(x)

P'(x) -P T
P(x) PoT x

. O.

Hence for any x > 0 we have
ix

P'.(t)
P(t)

0

dt

)
In

Po

andheCe

P(x)

-p T
o-

x

x

ci

I

1

TTTT dt.

'1 dt
ITU"

p
0
T
0 j'

t

JI

--P T

Po

= Poexp
ITdtl]T0

41

6



where x is the height in/inches above the Earth's surface.

Finally, let us adjust this formula, as in Section 2z so

that x is in units of feet. Suppose that the function T

gives the temperatures at height x, where x is in units of 'where x is the height in units of feet above theEarth's

feet rather than inches. Then the expression T(x/12) surface. Combining this formula with Equation (8) we

gives the temperatUre at height x, where x is In units of have a

inches. Hence at x feet above the ground x x

P(x) = P o
exp [

P

T
12x

T(t/12) dt]

P 1

0

T1 tT dt =
(2/1000)t dt

o 0

rule into the formula

T(x) = To (2/1000)x

So we must simplify the expression

12x

T(t/12)
dt

Q.

0

= -(500) ln(1 x/(500T0))

and so by (8) we have

P(x) = Po exp 0(500) 1n (1- x/(500T0)).
[2PoT

Introducing the substitution u = t/12 we have or equivalehtly

12x x
1

_ ,,
T(t/12)

dt = 12
T(u)

du

10 0

I3C,

.1

dt .= 12
TTfT

o .

Thus we finally arrive at

(8)

[[ 12p T
1

P(x) = Poexp T t dt
0

where x is in units of feet and Tex) is the temperature

at a height of x feet above the Earth's surface.

3:2 An Example, T Varies Linearly with x

General aviation pilots use the rule: the tempera-

ture of the atmosphere'decreas.es linearly with height at

a rate of 2° C (Celsius) per 1,00'0 feet of altitude.

Since the difference of adegree Celsius is identical to

the difference if a degree Kelvin we may translate this

42 7

(9) P(x) = P0(1 - x/(500T0)) ( Po

6000p T
o o

Example:

Assuming Equation 19) with Po = 14.7 lbs./sq. inch,

pc, = 4.34 x 10-5 lbs./cu. inch and To = 293° K

(a) What ig the atmospheric pressure at 20,000

feet above the Earth's surface?

(b)

_

ght is the atmospheric pressure`

half of the _p-r-e

Solution of (a): '--

ace

(6000)(4.4 x 10-5)(293)

P = 14.7
20-1000 14.7

(1 (50)(293)

= 6.86 lbs./sq. inch. 4

Comparing this answer to the answer of 7.24 lbs./sq. inch

iv
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of the problem as treated ii Section 2.2 we see that *ere
is a difference of only about 5.5%. This fs not surpris-

ing if we observe that the first order Taylor approxima-

tion of Equation (9) is independent of To.

Solution of (b):

t Assuming P(x)/P0 = 1/2 Equation (9) becomes

(6000)(4.34 x 10-b)(293)

C500(293)1
14.7

or

-[1 x 5.19 (computing to three
(500)(293) significant digits)

(500)(293)

1

x = (500)(293) 1
2

(5'19)

= 18,300 feet (to three significant digits)

3.3 An Application to Meteorology
. ,

Let p(x) denote the density of the atmosphere at

height x in feet. We wduldnormally expect that p de-

creases as x increases. Under these conditions we shall

say that the atmosphere is stable. Otherwise we shall ,

call the:atmosphere unstable. In an unstable atmosphere

-a given volume of air above would weigh at least as much

as an equal volume of air below. Under these ci icum-

stances there would be a vertical motion of air causing

wilds and down,draughts. Mathematically the air is un-

stable if

(10) p'(x) a0.

4,4

Let us study the conditions of instability under the

assumptions and results of,Section 3.1. Combining

Equations (7) and (8) we have

0
o
T
o polorx 1

)

1p(x) = 1Z7) exp
P
o

dtiv

p

where x is in units of feet and T(t) is the temperature
(meisured on the Kelvin scale) t feet above the surface.

Thus by Equation (10) the atmosphere is unstable if

-PoTo
P'(x) [T(x)l2

r' (x) +
o

I2p0T0

AP
This inequality reduces to-12p T
(11)/ 1"(x) c p° o

01'0 x
exp

P
o

jo ydti >0.

Example

iksume that T drops linearly with height, To =

293° Ks p0 = 4.34 x 10-5 lbS./cu. inch, and Po t 14.,7

lbs:/sq. inch. Find the maximum` temperature at 1000 feet

above the suifaCe of the Barth so that the atmosphere is

unstable. The assumption of linearity requires that

T(x) = To kx
0

'for some positiie constant k. Thus by inequality (11) we
have

or

12p To
-k

p'o0

0.0104 < k (approximating,to three
_significant digits)

10
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To achieve the maximum temperature we require that k be

as small as possible, i.e. k = 0.0104. Thus

T(x) = 293 - (0.0104)x. 2.1.

1

4, ANSWERS foNELECTED EXERCISES

19,600 feet.

So for x = 1,000 2.2. Po = 4.497 x 10-5

T(x) = T(1,000) 293 10.4 = 282.6. 2.3. 1.19 x 1,019

Notice that there is a temperature drop of 10.4 degrees - 3.1. 10.2 lbs. per square inch at 10,000 feet.

Celsius per 1,,000 feet. This corresponds to' a dA-op of

approximately 18.7 degrees Fahrenheit per 1,000 feet.

One Tina' note. The second model is still over-sim-

plified since it does not consider the possibility of

variation of atmospheric composition with altitude. In

particular, tfie atmosphera, may vary in altitude with re.-

spect to the amount o'f water vapor it contains. The

atmosphere may also contain such pollutants :s smoke and

smog. These all contribute to its density and hence to

its pressure.

Eketdise 3.1

Assulning Equation (9), Po = 14.7, (30 = 4.34 x 10-5, and To = -

300° K, what is the atmospheric pressure at 10,000 feet and at

20,000 feet?

Exercise'3.2
I

Assume the model of this section and that temperatureAdecreases

linearly with height. Suppose Po = 14.7, and To = 283. Suppose,

in addition, that at 10,000 feet T = 293 and P =.10.2. Find Po.

Exercise 3.3

Assuming T is a constant (and therefore T(x) = '17 for all x)

'Show that Equation ,(8) reduces to Equation (6),

Exercise 3.4

A4s ng that T decreases linearly with height and assuming the

modp1 i;rthis section, generalize the formula of Equation (9), give

that T decreases by k degrees Celsius per 1,000 feet.

46

6.87 lbs. per'squalle inch at 20,000 feet.

p
o

= 4.40 x 10-5

3.4. P(x) = Po (1

.

4,

V

12000p T
o o

kx Pok

1000To I

1

Az,

17.°
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1. INTRODUCTION

In this module we consider some properties and illus-

trations of space curves that lie onogiven surfaces. We

explore the following questions:

1) How is the instantaneous rate of climb along a

curve on the surfiCe related to the equation of

the surface?
F

2) Is it possible to find a path on the surface

for which the rate of climb is optimized at

each ppint along the way?

As physical exartles, consider the'foilowing situa-

tions:

Example 0-1. A party of mountaineers can ascend to

a summit by a leisurely process of "Mtchbacking". A

few hardier members of the group wish to test their met-

tle by-'starting from the same location as the others, but

reaching the summit by a Path that is always the steepest
possible. Certainly such a course, if it can be found,

, will be much more strenuous! If the topography of the

mountain is known, the principles of the gradient may be

used to chart such a course. '4

Example 0,2. An oil tanker .has' met with disaster at

night,, on a calm sea, and is left without radio communi-

caticl. A rescue vessel that able to monitor continu-

ously the concentration.0 of the spreading oil slick

tries to locate the tanker by moving in the direction of

greatest increase of,the concentration. What is its path?

In the situation of
.
Example 0-2, we are thinking of

the conc.entra,tion, of oil, C, as the dependent variable,

and we,have C = f(x,y)'whicKs of the form z = f(x,y),

(a standard designation for a 3-dimensional surface).

2. PRELIMINARIES
, -

'Let us begin by considering what is meant by "a

curve lying on a surface ". b Suppose S is a surface in

three-dimensional space E3 defined by

f(x,y) for all (x,y) in D ,

where D is'a set, in the xy-plane. We'assume that S is a
"smooth" surface; the partial derivatives 3f/3x and

3f/3y are continuous at each point in D:

Let ,hle a durve that is defined by the parametric

equations

(A)

x = x(tY

Y: Y = Y().

z = z(t)

where t varies over an interval Lon the real line. If

x(t) and y(t, lie in D for oath t in I, and if z(t) sat-
isfies the equation z(t) = f[x(t),i(t)), then we say that
y lies on the surface S. See Figure 1.

t&
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We also stipulate that Y be a differentiable curve;

i.e., y will possess arc length for all finite intervals

(tl,t2), in I. This is equivalent to the requirement

that the function V(012 ().7(t))2 + WW2 be contin-
uous for all t i(t1,t2) and the arclength s of y from

t, to t2 be given by

s =
1t2 1/(i(t))2 ['(t))2 + dt .

t -

The symbols x(t), y(t), z(t) indicate, respectively,

dx/dt, dy/dt, dz/dt.

In applications, D may be a bounded or unbounded do'-

main in the xy-plane and I may be a finrte or infinite

interval.

Example 1. Consider the surface S given by

(1) z = x2 + xy + 2y" ,

Or

f(x,y) = x2 + xy + 2y"

(The value of s can be found by numerical integration;

we used a Romberg procedure to obtain s z 520.0302 .)

Exercise 1: Let S be the-surface,defined by

z = f(x,y) = x2 + 2y2, for all (x,y):

a) Sketch the portion of S that lies over the first octant.

b)' Find of /ax, af/y

x(t) = t cos t

c) Verify that the curve y: y(t) = t sint
VI

\

z(t),= t2

d) Find the arclengdi of the curve yfor t in [0,2y].

(Hint: You should see that y is i helix winding up around the

elliptical paraboloid z = x2 + 2y2%)

3. -DEFINITION OF TIE GRADIENT

The partial derivatives of f(xM determine an im-

Note that portant vector field in the xy-plane.

af
2x + y ,

ax

of 8y3
ay

Vf(xq,yo) E i + j
af

y
(xo,yo)

x = x(y) = t where i and j are unit vectors along the positive x-axis

y:
1

y = y(t) = t2 t in [1,2] and the pbsitive y-axis, respectively, and the notation

'The Gradient Vf(xo,yo) of the surface S defined by

the function z = f(x,y) at any point (xo,y0) in D is the

vector

One specific curve y lying on S is given by

z = z(t) = t2 + t3 + 2t°

where we ma verify that z(t) = [x(t)]2 + x(t)y(t) +

2[y(t)14 by substituting into Equation (1). The arc-

length s'of this curve is given by

2

><1 +`4t2 + (it + 3t2 + 16t7)2 dt

41k,

,

-%.'.0,
3

i(x0,),0)
I

indicates that we substitute xo for x andy0 for y in the

expressions of /ax and of /ay.
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Example 2. To find the Gradient of the function in

Example 1,at the pint (xo,yo) = (1,2), we find the par-
tial deriVatives

1

af 2=
af

1-7 2x + y , = x 8y3 ,

form the general expression

= (2x + y)i + (x + 8y3)J
(1,2)

vie may also use the,appropriate chain rule, as follows:

af 3f
3y

(B) z(to) =
ax
, [x(t),y(t))x(tY + [x(t),y(t)Jy(t)1 ;

I t = to

or, °what is the same thing,

ax
Df

z(to) = -5- (x,y) x(to) + -;,- (x,y)

Ix-x(to)
IY=Y(to)

then substitute 1 for x and 2 for r to find ' The chain rule is also commonly written as

Vf(1,2) = 4i +65j . dz of dx 3f LI/
at 3x UT 3y dt

y(to) .
x=x(to)

Y=Y(to)

Note: The Gradient of S depends only on f(x,y) and on

(xo,yo) but not on zo, where zo = f(xo,y0). This fact,

though readily apparent, deserves emphasis! Even though

S is 3-dimensional, the gradient op S is a 2-dimensional
4

vector. Often the Gradient Vf(x,y) is confused, with the

Normal to S at the point (xoyo,z0) The Normal

N (x ,y ) to S, however, is given byso
3f ofNs(xo,y0,z0) = (x0ydi + (xo,y0)j lk

which is a vector with three components, while the Gra-

dient has only two.

4.-FINDING THE TANGENT VECTOR TO A CURVE ON
4

see Thomas Finney,

An example should

of finding z(t).

Example 3. From

p: 01 or Greenspan Benney, p. 496.

help t clarify the two distinct ways

Example 1, we know that the curve

x = x(t) = t

y = y(t) = t2 t in [1,2]

z = z(t) = t2 + t3 + 2t8

f(x,y) = x2 + xy + 2y"

of y we have

= 2to + 3t021 + 16t07 ;

to y,at to is given by

= 11 + 2toj + (2to + 3t02 + 16t07)k .

y:

lies on the surface

z =

From the definition

z(to)

so that tangent vector

T(to)

A SURFACE USINGTHE GRADIENT

Suppose that a surface S is defined by : = f(x,y),

and that y is a curve on S. recalling the paramet-

ric form (A) for y we may define T(to), the tangent vec-
tor to y at t = to by the equation

T(to) = Z(t)i + y(t)j + t)k 1 '

= ton It

z(t) nay be found directly from the parametric forms,

but since we have a chain

x = x(t)
z = f(x,y):

= Y(t)

We can also calculate (to) by using the chain rule, a7,/

follows:

afTiftWto),Y(I0)) = 2x +

(x = to,y = t02)

= 2t0 + t02

53 6



af

ax (x(to),Y(to)) = x,-+ 8y3

(x = to,y = to2)

= t0 + 8t06 ,

from whi ch, using the chain rule (B),

i(t0) = (2t0 + to2)X(to) + (to + 8t06)jr(to)

= (2to + to2)1 + (t0 + 8t06)(2t0)

= 3t, + 3t02 + lbto2 .

Hence, the tangent vector to y at to is given by

1(to) = 2t03 (2t0 3t82 16t07)k ,

which checks with the above calculation.

Exercise_2. For the curve

{

x(t) = t + 1

y: y(t) . t - 1

z(t) = t2 -1

which lies on the surface z = xy, find the tangent vector T(1) in

two distinct ways.

The connection between the Gradient and this

alternate calculation which uses the Chain Rule will

be explored after we recall. some concepts and proper-

ties of vectors.

Let a be the vector a = all + azj + a3 k.

The length of the vector a is denoted by la' and

'is given by

ra^i = /a
1

2 + a1'2 + a
3

2

7

2. The projection of a on the xy plane w1.11 be

denoted by

a Eai+ a
2

j ; See Figure 2a.

3. The dot product of "A. with vector 8'= b,I 1)23
->

b bk is denoted by a b and is given by a =

albi + a2b2 + a3b3. we also have -a' 8 = IaI I tt"

cos 8, where 8 is the angle betwee and 8; see

Figure 2b. ,

4. Two non-zero vectors a and b are said to be

orthogonal ,for perpendicular) if -a" 8 = 0, i.e.,

if the angle 0 between them is r/2. From 3, a

condition for o'rthogonality'also becomes,a,b, +

a2b2 + a3b3 = 0, which Ls satisfied in two dimen-

sions (note a3 = 0, b3 = 0) if and only if we have

8 = c(-a2i + alj), where c is a proportionality con-

stant. .

So far we haye seen that if the curve y lies on the

surface g, (given by z = f(x,Y)) and if x = x(t) and

y = y(tfre given, then the z-coordinate for y must

satisfy the-"surface requirement" z(t) = f[x(t),y(t)).

More importantly we notice that, as in (3),

i(t) [x(t)?Y(t)))401+ (x(t),y(t));r(t.)

which may be written as the dot product

z(t) = Vf(x(t),y(t))
P
(t),

where f = ;((t)i kt)) is the projection 'of the

tangent vectorT.(0 in the xy-plane.

Ei
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A

Figure 2a.

1

ar

Figure 2b.

9

Thus the rate of change of the coordinate z(t) de-

pends, on two vectors, c7""f(x(t),y(t)) and "f (t), both of
which(a0e located in the xy-plane. By the definition of
the dot product we can also write

-i(to) = Of(x(t),y(t))1 ITp(t)lcostP(t)1
It = to

wher gto) is the angle between the Gradient and the

projected vector Tp(t) at t = to . We see, then, that

the sign of i(to) is deterWined by the sign of cosgt)
and thus that the coordinate z(t) increases when

cos1P(t) > 0 and decreases when cosIli(ct) < O.

And so i(t0) may be found from the two vectors

in the xy-plane (Figure 3) merely by forming their dot
product.

Of particular significance is the situation where

11,(t) = n/2 for all values 'of t.in some interval. In (that

case, costp(t) a 0, and i(t) (from above) for all t
in the interval. Since the rate of change of z(t) is 0,

z(t) is constant for all t in the interval. This leads

us to consider only the family of level curves,

Y:, f(x,y) = c, or f(x(t),y(t)] = c

which are projections of curves y lying on S such that

each curve y is parallel to'the xy-pce,qall along the

curve y, z has'the same value c). The notation YL will

be used to refer to a particular level curve of the form

f(x,y) = c; see Figure 4.

Thus cosy(t) e Q implies:,

At,each point (x0,yo) on a level curve f(x,y) = Co ;

f(xo,y0) -1p(tj) = 0

where xo = x(to), yo = y(to), and 1
P
(t

0
) is constructed

from the parametric equations of the level curve (in the

case they are available). If parametric equations for

the-level curve f(x,y,) = Co are not readily available, a

C3
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Figure 3.

11

Figure 4.

vector proportional to ip(t0) may beconstructed simply

by noticing that f(xo,y0) and Ip(t0) are perpendicular

so. that by property 4 above,

fp(t0) = cE g (xo,ydi + (x0,y0)j]

Some examples will clarify these;copcepts.

Example 4. One level curve YL for the surface S:
x2

+
4y2 is S x2

+ 4y2, and it contains the point

"(xo,y0) = (1,1). See Figure S. For this level curve,

we/write some parametric equations with relative mase:



1x(t) = 15 cos t

1

y(t) =11 sin t ,

t in [0,2ff]

and at (x0,yo) =. (1,1), cos to =N1/./3, sin tb = 2/5.

Now
. ^

Vf(xo,y0) = 2x
o
i +.8y03 = 2.i + 8j;

:T
P
(t

°

) = x,(to)1 + y(t)3.= -.if sin toi + 7 cos t
1
3

= ..§ _i i.+ /8 . 1
VS' 2 ',is- 3 . 4

1 1
+ 7 j 7 (-4i + j)

And we check that on this level curve,

cf(No'yo)
1)

1 (-16 + 16) =

1./T T(to) = (2i + 8j) (-8i + 2j)

Figure 5a.

Figure 5b.

1')
13

*

Example 5. Next, treat the same surface ag in Exam-

ple 3, but without parametrizing yL. The level curve

5 = x2 + 4y2 contains the poilit (1,1). As before,

'f(x
o
,y

o
) 2i + 83

and by inspection we construct

Tp(to) =

which has the same

vious example.

c(-8i + 231 ,

direction as the T
P
(t

0

) in the pre

5. SUMMARY

,Let (xo,y9) be a point on !tile Zevel curve IL:
11.

f(x,!) = Co. 'Then the vector '

if(xo,y0) = lf (xo,ydi +
x

is normal

ay(x0,y0))

to y at (x0,y0), and the tangent vector to Y
L

67 14
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at (x,y0). (x(t;),y(t3)) is

f (to) = - (x )ip oy 0,'0v Xo

or

$

A final example will illustrate the user of the Gra-

'dient in the case where the level curve is not,easy to

parametrize.

Example 6. Let z = f(x,y) = x2 + xy + 20. A level

curve for r this surface S is x2 + xy + 2y4 = 4, and

(xo,y0) = (1,1) is a point on yL. As can be seen, yL is

not easy to parametrize, but from Example 1 and the above

simmary, we may write -f(xyo) =-3i + 9j and, by con-

struction, ip(to) (-31 + j). 111-cftefira-Tiy, this latter

could also be obtained by noticing that di t differen-

tiation of the level curve yields

(2) (2x + y)dx + (x + 8y3)dy = 0

or, at the point (1,1),.

T
p
(t

o
) = x(t0)1 + y(to)j

3dx + 9ciy = 0 :

thus forcing the tangent vector, : t.

dx
al' dt 3

to have a direction parallel to -3i + f.

Exercise 3. A point P is moving along the level curve of Example 6:

At a certain moment Its acceleration s known to be a = 4i 4, and

it is located at the point (1,1). Resolve the acceleration vector
1..

into two components, a tangential component and a compohent normal

to The path (Hint: If a vector' is.resolved into tangential and

normal components T and R, such as -; = c,T t c2R, then taking the

dot product\of both sides with T Aelds V a = cif since .

T g = 0; thud

T -1

4

15

and in a'similar manner we fin

c, _ )
INI

Question: How does Equation (2), p. 20 differ from the

chain rule (B) on page b for z(t) mentioned earlier in

this section?

Review Question: What is the role of the Gradient in

constructing the tangent vector T(t) to a curve lying on

a surface S?

Answer: ,(i) for an arbitrary curve y, the planar compo-

nent x(t) and y(t) would have to be given, from wlfich

the components ;((t) and ;7(0 are obtained; then the Gra-

dient may be ed (via the chain rule (B)) to determine

the cOmpone z(

....et-i1' for a level curve yL, we may find a vector

6proporrional to f(t) by merely choosing a vector perpen-

dicular to the Gradient vector.

6. APPLICATION OF THE GRADIENT TO FINDING

CURVES OF STEEPEST ASCENT (DESCENT)

Copsider again the preliminary example mentioned in

the introduction. Suppose that f(x,y) in Figure 6 repre-

sents the concentration of oil, C = f(x,y). Now if the

rescue shlopois somehow able to monitor the concentration

of oil at each point (x0,y0) and wishes to go in the di-

rection of greatest increase of C (from left to right)

proceeding from level curve to level curve, we would ex-

pect from the results of Section 4 that it contin-

. uously follow the aradient direction from the point, say

(xo,y0), to the right. Actually, this is true, an& we

will provide.a proof'of this before continuing with some

examples.

CJ
16



Figure 6.

Keep in mind that we are seeking a path in the

xy-plane which will lead the rescue ship to the disabled

tanker by the method described in the precedingparagraph.

Let us translate our goal into more mathematical

language. The desired path in the xy-p ane could be in

terpreted as the projection y (t) onto the xy-plane of

special curve y(t) which lies on the surface C = f(x,y)

Or z = f(x,y), (where we see that the roles of C and z

are interchangeable!). The special property of y(t) is

that its projection y (t) in the xy-plane. continually

moves in the direction of greatest increase of C = f(x,y)

from level curve to level curve.

17

Our method of solution will be, to discover the curve

Y(t) and then to return attention to its projection y (t)

in the xy-plane, which is the path we seek.

The curve y(t) can be described parametrically as

follows:

x = X(t)

y(t): y = Y(t)

z = Z(t)

}a < t < b ;

here, since y(t) lies on the surface C = f(x,y) (or z =

f(x,y)), we have Z(t) = f(X(t),Y(t)), and the projected

curve y (t), as in Section IV, is.--
4

= X(t)

Yp(t):,.

A y = Y(t)

a <_t <_b .

As before, the syfibol 1 (t) denotes the tangent vector to

the curve y (t), and as in (B), we also have

(C) Z(t) = f[X(t),Y(t)] 1p(t) .

As you are aware, any curve may have several (and

even infinitely many!) different parametrizations; we

wish to avoid y complications which may arise `along

this line by s ehow""normalizing" the curve y (t). It

is also-for convenience that we wish to make ip(t) inde-

pendent of the parameter t, and thus we introduce the

arclength s which is independent of the particular pana-

metrization used for y (t).

(D) s 7," f
t

IT (t)Idt = I
t

i(X(t))1 + 0.(012 dt
0 0

or (by the, Fundamental Theorem of Calculus)

ds
ITp(01 m(0)2 r.f(t)]2

Note \that, regardless of the form of parametrization of

y(t), we can solve (D) (symbolically!) for t as a func-

tion of s, say t = t(s). Now, dividing both sides of (C)

7.1
18



by IT p(01, we obtain
(s) ± /f(X( ),Y(s)]

T

P
(t) P IVf[X(s),Y(s)]

If (t)[

Or

where

dZ
dZ xvf(X(s),Y(s)] IS)

ds
aT

ffl(t)

uT (s) r

P
IT WI

:Isom*

is (conveniently!) a unit vector in the direction of

(t), and we have replaced t by the expression t = t(s)

so' which was found (symbolically) from (D).

Once again we recall the rules for a dot product and

note that

-
i

I

fix(s),y(s))1 (s) cos0(s)1p
= If(X(s),Y(s)11 cosW(s)

What have we achieved here? This expression for dZ/ds

relates the rate of change of Z with respect to distance

(arc length) along a curve lying on a surface S and the

Gradient of that surface.

From this expression, we can see that

(i) dZ/ds is maximized or minimized by allowing

tp(s) to be 0 or n, respectively, and

(ii) max dZ)ds = r/f(X(s),Y(s)]I,

min dZ /ds = -If(X(s),Y1s))1 ;

either (i) or (ii) will be attained if the direction of

the unit vector uT
P
(s) is precisely the same (or oppo-

site!) direction as the Gradient; more precisely,' if

S 19

Thus we see that our assertion in the first para-

graph of Section.b is indeed valid: the path to follow

to achieve the greatest local increase (decrease) in

C = f(x,y) is precisely a path which takes the direction

of the Gradient vector (or opposite that direction) at

any point (X,Y) = (X(s),Y(s)]: i.e., at each point the

-decision on which direction to move next is made on the

basis of examining the Gradient. We will refer to this

path as the "path of steepest ascent (descent)".

Another way of stating this important result is to

note that the tangent vector uT (s) to the path of steep-

est ascent (descent) y
P
(t) is parallel to the Gradient,

Vf(4(s),Y(s)]; thus
,

the components dX/ds and dY/ds,of the

tangent vector can be expressed in direct proportion to

those of the Gradient.

dX
=

"

, 3f r
1A`,,,'ax

dY af
aT = A [x(s),Y(s)) ,

where 'X = ?(s) is a function of proportionality.

Example 7. If B 4 and A # then the level

curves of the surface S: z = f(x) = Ax + Byer% whieh

is a plane, are straight lines

Ax + By = C ,

each of whose slopes is m = -A/B. We will construct

yp(t), the curve of steepest ascent in the xrplane

through the point (0,0), and y(t) the curve o'-f steepes1

ascent/lying in the plane S. We have

(3)

of _ A

'

of
- B

dX dY
= AA , =

73 20



and since the curve is topass through the point (0,0) we
may choose to measure arc length s from that point, so
that an additional condition on the curve of steepest as-
cent becomes

(4) X(0) = 0 , Y = 0.

Then from (3) we have

dY
ax -.T

Now integrate and apply conditions (4).

Y(s) =
A

X(s) .

Hence we see that a set of parametric equations for the
curve of steepest ascent in the xy-plane

X(s) = s

Y (s) =
P Y(s) = T s ,

s > 0

and a set of parametric equations for the curve of steep-
- est ascent dying on the surface S is

dX
fx =ex

dY Y

dY f = Y
TS- x

Upon separating variables,

dY dX
-7 '

and integrating, lnY = lnX + 1nC = 1nCX or Y = CX. Also
since Y = pro when X = xo we have Y = (yo/x0)X.

A parametrization for yp(s) would be

and

X(s) = s

yp(s): i

I Y(s) =(Pjs

1

1

X(s) =,s

Y(s):, Y(s) =r)-:!]s

Z(s) = 1-(1 + ();:z1)2)s2

Y(s) = A s
B2

s >

lines whenever the level curves f(x,y) = C are circles

X(s) = s

, You will notice that "Gradient" curves y (s) are straight

Z(s) = (-A + A--)s + D

1

0 s s < xo

0 < s <

It is now evident that y
P
(t) (where we replace'the para-

.

meter s with the parameter t to facilitate correlation Example 9. Find both "Gradient" curves y(s) and
with concepts developed earlier) is perpendicular to everg yp(s) through the point (xopyo) when z = f(x,y) 5t-
levercurve yi, in.the xy-plane. This is no accident, and 1/2 (x2 + py2), > 1.

(see Figure 7); keep this in mind as you proceed to the
next example.

we leave it to you.to prove:

A steepest ascent curve yp(t) is perpendicular

(orthogonal) to any level curve at a point of

interfction.

Example 8'. Find both steepest ascent curves y(s)

and y (s) for ?he-surface z = 1(x2 + y2) ,'~through the

point (xo,yo).
1

21

dXs

dY pY
7-47'4 UT XdY

a-g
uY

froM which we form the differential equation;

dY x
Y.-

a
x X(b) = X0 , Y(0) = yo

22
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Figure 7.

f
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Integrating, we obtain

InY = + 1nC

= 1nXu + 1nC

= 1nCX11

or

Y =.c)J'

Again inserting the point (x0 ,y) ,e have

Thus parmetrizations for Y(s) and Yp(s),

would be

( X(s)

Y (s):

Y(s)

Y(s):

S

yo(x/xo)V.

respectively,

0'5_ s <xo

X(s) = s

/

o

fs 10
Y(s) A s < x

oY(x,j

2 (s) =
-(s2

+ p2y02(i-0-11

In the present case, we see that the steepest ascent

curves in the xy-plane resemble parabolas passing through

the origin whenever the level curves of f(x,y) = C are

ellipses centered at the origin.

Exercise 4. Sketch the level curves and the gradient curves y (s)

for the previous example in the cases where p= 2 and p = 3.

A remark concerning the solution of the differential

equations is in order. In finding the gradient curve

y (s), you will always be using expressions of the form
17-

dX \

=
ds

fx "(X Y)
dY f

and consequently

d

4
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(E)
dY ) fy(X

'

Y)

U7 x(x,Y)

The general problem of solving this differential equation
for the actual curve ,Y = Y(X) which we have been refer-

ring to as y
P
(s) can 'be quite formidable. In our elm-

ples, you will notice, the expression (E) gave rise to a

rather simple separable differential equation. In every

case, this was the result of special choices for f(x,y),

and a little imagination-shoulsi cevince you that a more
. complicated surface z = f(x,y) will result in a more chal-

lenging differential equation. Along these lines, we sug-

gest'that those of.you who are better versed in solving

- first-order differential equations explore the fOdlowing:

Problem: Find the, Gradient curves for the surface

-1/2[Ax2 + 2by 4- Cy')z...F(x,y) =, Coe

where AC - B2 > 0, B > 0, such that y (s) passes through

=.xo, y = yo. You will find that (E) becomes a homo-

geneous differntial equation. A further hint: Perhaps

an initial rotation of axes to eliminate-the xy term

would prove convenient!

We conclude with an additional exercise which re-

lates our development again to a physical setting.

Exercise S. A tanker located at coordinates (x1,y1) has capsized,

leaving an oil slick floating on the calm surface of the ocean with

concentration given by the law

C(x,y) =4Coe-a((x-xi)' "I(Y-Y1)'1 > 0, > 1.

A small rescue vessel p]roceeding from location (xo.yo) moves slowly

in the direction of increasingiconcentration according to the above

law for a calm sea. What is the equation of the rescue vessel's

path?
A

25

7. 'MODEL EXAM

A "sugarloaf.' mountain has the equation
a(x2

+
0,2),

a > 0, u > 1. Find the steepest
ascent:curve a mountain climber must take if he or she--

wishes to ascend the mountain by Gradient methods! The
climber starts at the point (xo,y0,0). (Follow the indi-
cated steps to the solution.)

a)

b) Find 'the Gradient vector for the surface at the

point (1,2), and also at an arbitrary point

(x,Y)

c) Find the level curve passing through the point
(1,2).

(1) Find a tangent vector to the level curve in
c) at the point (1,2).

t/1

e) Using the result of b), find the differential

equation for the steepest ascent curve.

f) Solve the differential equation inserting the

given condition at X = xo, Y = yo.

g) Find parametric expressions for the steepest

ascent curve y(s) which actually lies on the

mountain surface.

Find the level curves for the surface

z = f(x,y1. What type of curves are they?

h) Choose your own values for a and p, and make

sketches of the mountain surface, the level

curves, and the steepest ascent curve y (s).

I
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8. ANSWERS TO EXERCISES AND 'MODEL EXAM

Exercises

1. a) The surface is an elliptical parabolofd, with

lowest point at the origin; its sketch is very

similar to that of Figure Sa.

h)
df

== , . 4y
x dv

2

c) [x(t)12 +2(v(t))2 = t2cos2t + sin't

a

=(t2 coszt + sin2t)

t2 = z(t)

d) Using the formula for arc length given in

Section II, and grouping terms,

t=2r

s = jrA + 711sin2t

t=0

+ 1)co.2t t sint cost +4t
2
dt

r

From-the definition of y and T(to), with Ao = 1, we

have,

1(1) k(t)i + +

It = 1

or T(1) = li f lj + 2k. Alternately, we can 11,.e the

chain rule; here f(x,y= xy. Since x(1),= 2 anJ

*y(1) = 0, \
2:-i(x(I),,(1)) SI P '''

x i 2

0 ,

.
,z y = (1

and

of
--(x(I),Y(1))"Or

80

= x = 2

x = 2

y=

27

fibm which

c
z(1) = 0 X(1) + 2jr(1).

=,0(1) + 2(1) = 2

so that

1'(1) = ii + 13 + 2k .

4. From analytic geometry, you should find that the

level curves for both the cases u = 2 and it = 3 are

ellipses, with the major and minor axes maintaining

a constant proportion to each other in eachcase$

The gradient curves y (s) are parabolas for the case

= 2 and cubic curives for the case u = 3. Sketch

the corresponding iamiliesof curves on the.same

graph, observing the ortho.gonality property!

S.
.dX Co(-2a(x-x1))

ds M

Co(,2an(y-,y1})
,

ds M

where we have used M to. represent

e
-[(x-x )2 + u(y-y )2]

Then

8.1
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h) For simplicity, let us choose a = 1, p = 1.

= f(x,y) =:H (x2 + 4y2), an elliptical para-

boloid. The level curves are H - C = x2 +.4y2,

CP i C. <_ H; a family of ellipses.

\

..

The steepest ascent curve y
P
(s) is

Y =
Yo' 7-,-) .\

.See figures 8a, '81), and 8c.

.

Fizure -8a.

Ct.

31

...

. .

1

1

Figure 8b.

4...

Figure.8c.

4
32
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separating variables we find

dY o dX
y-y, x-x, '11

and integrating,

-in(y-y,) = oln(xxi) +

= ln(C(x-x?)"1

'Taking antilogs, we obtain

y - yi = C(x-xl)P

Let us insert the given condition, which is the

starting point (x0,y0) or the rescue vessel. Then

y, = C(x,-x,)P,

"....r,.
c

-(xv-liP \ f
P

= 4aii - 2aj

so that finally
....

e
dX dY

) Ts- = -2aX ,

a-

This is at family of ellipses, with the ratio of

the major axis to minor axis remaining constant..

b) if(x,y) = 2axi - 2apyin

/f(1,2) 2ai - 4apj

c) To find the level\curve passing through (1,2),

insert x = 1, y = 2 into the family of level

curves, obtaining (H,- C)/a = 1 + 4 ; using this

value for (H C)/a, the particular member of-

the family passing through (1,2) can be identi-

fied as

1 + 4o = x2 + py2 .

d). The laTgent vector along a level curve is per-

pendicular to the Gradient, so from b),

x-- xi IP
Y = Y (Y -r ) x. 1 0 1 (0 - x,j

Whatkind of path is this? For example, if t, =

this path would be a parabola, leading directly from

the point (.x0,y0) to the point of disaSter, (x1,y1).

(The vertex of the parabola is located at (xl,y1).)

Model Exam.

a) From the form of the surface equation, the lar-

,gest value z can possibly have occurs when

x = y = 0; indeed z = H is the height of the

mountain! Also = 0 would indicate ground

level. thus the family of level curves would bel

Or

84-

C = H - a(x2 + tly2i) , 0 < C < .H ,

H - C
= x2 + uy2 .a

29

f)

dY
dY UT oY

-Tor --72rtx X
ds

dY odX
Y X ;

lnY = 1nCP ;

Y = CX1' .

lnY = ulnX + 1nC ;

Inserting the condition, yo Cx0P, C = and
Xt1

thus.

fx )'
Yo. x0J

X(s) =-s

g) Y(s)1 Y(s) = Yo
s

xo

Z(s) = H- a(s2 fs )]2i-
4y01,0

0 < s < x "O

30,-J
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Table of Contents
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V 1. DESCRIPTION OF THE PROBLEM

The orbit of a satellite around the earth may he
considered to be determined by the gravitational inter-
action between it and the earth alone. Since the sun
also affects the motion of the satellite, a small amount
of error is introduced. However, the earth's gravity is
the most important gravitational factor.

In the same way, the description of the motion of a
planet around the sun may be viewed as the result of
these'two bodies' mutual gravitational attraction. Again
other planets affect this motion, but the sun is the ma-
jor influence-on the orbit of a planet. The dynamics ofl
the history of the solution of the problem of describing
the motion of a planet can be recrepted in a short time
using the modern conveniences of vector differentiation.
The central ideas and facts are the Inverse Square Law
and Kepler'.s three Laws.

' The common thread of the satellite andeanetary
.motions reappears in modern physics on the sub- molecular
-level-in the form of Coulomb potentials.

2. STATEMENT OF THE LAWS

We imagine the situation'of two point masses, one
mass very much larger than the other. The effect of this
assumption is that we lee the position of the larger mass
be fixed. Put the origin /of the coordinate system at the
'larger .mass M. For convenience, call it the Sun. The
motion of the smaller mass m, qow called a planet de-

.

sc.ribes a curve in 3-space. In Section 6 we will show
/

,

,that the motions of interest are planar. We will de- '

scribe the motions in polar coordinates. The path of the
planet is written in parametric form (r(t),0(0)-where t
,is time.

9.2

J

(f, 0)

PLANET,mass m

« M

0=0.

SUN mass Mc

Figure 1. A planet moving around tile sun in a fixed
coor4inate system. The heliocentric view of the solar s'ystemprovided by Aristarchus c. 310-230 B.C. and resurrected by.
Copernicus, 1473-1543 led to the discovery of- Kepler's Laws -and the Inverse Square. Law. -

, ITwo of Newton's Laws are germane to our)discussion.
The first is

(1) F = mA

. that il, forCe F and acceleration A are vvtdr quantities
and they are proportional with the proportionality con-
stant being the.mass." 'In our problem, the acceleration
that accounts for.the 'vector motion (r,O) is due to the
external forces via equation (1).

(2)

Secondly, we have' the Inverse Square Law

F = =GmM
,

ir
2

where G is 'a constantconstant which depends on.the units of men-
surement, but not on the solar System, and ei's a unit
vector directN,from the origin to the mass.M.

We will discuss three of . Kepler's Laws. .

Kepler's First Law. The radius vector to the planet
sweeps out area at a constant rate with respect to time,
that is,'the area'of the shaded region is X1t2 - til-
where.), is a constant.

93 .
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Figure 2. The radius vector sweeping out area. The
first of Kepler's Laws was the ,computation of the rate in which
this area is swept out. It is a constant, even for domets that
pass the sun only once.

' Kepler's Second Caw. The planet's orbit is' An ellipse

,with the sun at a focus.

Kepler's Third Law. If a is the semi-major axis of an
/

elliptical orbit and T the time to complete one orbit,'

theri:T/a' is a solar system constant. Iirother words,

if the quantity T2/a3 is computed for two different plan-

etsof the solar system, it is the same in both cases.

Itionly depends on the mass of the sun and units.
,

.

3.* HISTORY OF THE PROBLEM

,

The problem of trying to eZplain'the planetary mo-

tion goes back, to antiquity.. The part of the history

which we describe begins in the sixteenth century With

Copernicds (.1473 -1543) who was a proponent of the helio-

centric view of astronomy, i.e. that the "sun isat the

' center of things." .

Tkcho Brahe (iS46-1601), Opposed the Copernican theory

...religious grounds.' It was thought that anything that

'I''

3

did pot put the earth at the center degraded humanity.

Nevertheless, this astronomer's carefut.work was a maibr,

contribution in validating the Copernican'approach. He

1141 received a commission from King Frede.rich PI of .Den

mark to update astronomical tables. His observatory on

the -island of Hven--coned no telescope (it was inven-

ted in 1609) but he was nevertheless able to record a

great deal of accurate information.

This-accufate information was put to. good use by

Johann Kepler (1571 1630), .rho wasTycho's assistant for

a short time. Trained as a Mathematician he took as his

task, the study of the orbit ofeMars. He was an ardent

supporter of the Coperncan'theory and his life long am-

bition was to find the mystical harmony in the skies.

His'detailed study of Mars led to his patlishint his

first two laws in 1609 an4 the third some ten years later.

-\ Galileo Galilii (1564-1642),44ho is well known for

hi/experiments on particles moving under the influence .

of,gravity,' dismrssed Kepler's astronomy because in intro-

ducing ellipses he was departing from the more perfect

circular motion. Thus the scientist who was to be branded

a heretic for his scientific views rejected, out of hand,

the work of Kepter fqr very unscientific reasons.

ln'the.year that Galileo died, another scientist,

Sir Isaac Newtpn (1642-1727) was born. Newton was well

acquainted-with the work Of both Kepler and Galileo and
44,

of course with the Copernican approach. At the age:of

25 he discovered that the only gravitational force con-

sistent with Kepler's laws,Was the Inverse Square Le.

He did not publish his result.immediately because he at-

,tempted to validate it by doing calculationson the orbit

of the moon. Unfortunately they -did not check because

some of the data bn distance to the Moon was incorrect.

The correct data indeed did verify the Inverse square Law.

He published his result only when it'was begun to be pro-

posed by other r- 0

4



. An amusing sidelight is that'when asked about the

posibility of the Inverse SquareLaw as being correct,

Newton replied that h had once done the calculations.

When asked to reprodute4them, he could not! Eventually

he found an error in hi's second .calculation which when

corrected gave the,correct answer.A He is generally cre-

'dited with the discovery'of the Inverse Square'Lau.

succeeding sections'we try to recreate the scien-

tific'process of going from Tycho's empiriCal data to

Kepler,'s Laws t....N;wtOn's Laws. We will also show that

starting with Newton's Laws, we can recover Kepler's Laws:

. .

4. MOTIONS DESCRIBED IN POLAR.CdORDIATES

0

Suppose that we have amotion descxib'ed, in polar co-

ordinates and, R(t) is the position vector. In order.to

,isolate certain aspects of the motion we can introduce a'

local coordinate system.as follows.

:
7-. R(t)

e

S'

o

Figure 3. The staiiLd'unit vectors for parametric
polar coordinate motions. These form a "moving coordinate
system" which depend on the position of the particle. This
modern tool, not available to Kgpler and Newton, allows one
to almost completely dispense WIlth geomer-ric and/dr,trigono- e
metric arguments.

- *This is a warning to the Scientific neophytle. Keep 'your notebooks
/. -orderly.

9
_

,4

The vectors Ur and U are to be unit vectors oriented as '0,
tindicated. ' They 40 not.depend on r bust it is easy to see

that Ur(q) = (cos 0,sin6), and U0,;(0) = (-sin'O:cos 0), '

d
and d

(3) ar, Ur = Ue ; anu ue = -u,

Now R(t)'= r(t)Ur(6.(0) is the equation of the motion in
polar coordinates. Welet:v and A be the velocity and

accelerat,ion vectors, the prime notation means differen-
,r!!"tiation with respect .to time. Then,

dUrV = R' = r'Ur + raT de
= r'Ur + rUee'

,and \ .

. ..-i,ei.

A = V' = (r UT + r'Ueea + (r1U
e
01 + rU

6
6" - r(0,,4-rU

...

Therefore".
.

(4) A.= r(0')21Ur + + re')Ue .

The Coefficients in this vector

(5) ar J= r" r(01)2

and

(6) ae, = 2r181,+ re"

are called' the ial and angular components of accelerd.V

tion respect' °These"are the usual tangential and,

normal compl!' a:o ly in special cases, e.g. when

,motion is on'a circle centered at thq,origin.

We:
,

recall also that in polar coordinates the ar

element is rdr de sothat the area of the shaded reg4

Pri-Figure 2 is given by

i(7) g

1,

..,

S(t) = r2d0fr(0)rdr = f 2de = f- ' 20Zr 7r
02; t2 , .e

e, o e
i

,t,, ,

5
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5. DEDUCTION OF THE INVERSE SQUARE LAW We solve (10) fer coske + a) and tie in (11) ,to get

FROM KEPLER'S LAWS,.

Kepler's Laws :ar; empiricil results based on careful

observations., If one assumes that only forces exterlal '

to the planet' account for its motion, then what mint this

force be? Let us assume Kepler's Laws.

' First obarve that the fifst law applied to the for-

mula (7) gives

1 St(t2) = 1 2r 0 =

,zhere 'XYris a cont;nt. Since ae = 0 we have, (compare (1) sand (4))

Br" - X(-
B = Q .

Rearranging, we have

'A A .6,
r" - - 0' Fr.

On- the left hand side replasce ):by.(8) a
$
nd'on the right

side replace 8' . A r 2 by (8) to get : .

-A 2= r" r(0')2>= -
Br

2

.

The constant isdivided by 2 to make the next equa- , m ,F -= - u

..

the Inverse Square Law.
Br2 r

tion and its further uses simpler: Thus .

.
.. ,u .

.

. (8) r26 t. =' X
We have shown that tile' Kepler's First and Second.

..- t.i Laws imply the Inverse Square, Law,. ,. The above Calculation
If. wokrOifferehtrate this relation then . - . - . 'r'Y is not what NewfcEn' (lid,. Something closer to what he did.. ._ . ' . ' :,,i; i. ofr 4," i ,i. ,

e' K)
..4

A, 0 =, 21-T'OT, +' 14.2 e " 1 "11.2rtfi' l .r8"]-. ra.' .

.

,, t is ou0.ined, in Exercise ^1 where i.---ks shown- that the Se-' e. . - , .,.. _
,, 0

' 4
. .

, . - f v" ., oW. :1 .
4 . de ' 'cord n d Third Caws .'impiy the. Inverse -Square_ In any

*.

2". We",.,see.'thae li.epIVts* fis%i.l?N.iittplt.e.s. that as = 0, I 0 .0 0 .

'case, this-s&tion shows that experimental 'evidence-well
" '''', tligt is 'the a4celte,rationan,d, therefore-tile force is pure. .. ' ' 4 '

.. ..-.....-

used can lead to nice and powerful theoretical results.
-1,-'"'- 1.3edn,-thea-raddal *cli'rec;tion. ''''Slio;tilforce* are callecre4n-- .

..

01,

,t
/ t ZIG 4 fre?ia e fi&rds. ,. . - .

0 . , 0 -

that the planet mo3ies1 -6-\ ..
We further assume'

,

in a conic Exercise 1. ssume, ag Newton did, that the moon is in a circulat' ..
. sectio-nrfte Ap):Iefidix 1.j), thzaVis* orbit and' that Kepler's Second and Third Laws hold. °.Show that,6' 4

a Constant and therefore it is uniform circurai motion. Introduce
(10) . *r(1'+ e cos (e? a)) = B . V 1 ' - .

: ' 4 ., f the linear speed. v = ds/dt along the circle. Show. that ar w -(v2/r).,.,.
7 Differentiating with respect to .dine we get * . This is the usual formula for centripetal accelefation. combine with

the Third LaW to getthe'Inverse Square Law.r ' (1:4-+ ,e .:cos (8 + a)) - re iin 18 '4- a)t+.1 t= 0 * .
., i

Iff we multiply Exercise 2. Justify the.steps in the following withbut doing anymultiply this .equation by r and use (&) and we J

1 '04. integrals. \ a 1

y ,
....

get'N, . ,

,2,432(1 - x2/a.2.,) dx.-. abi Or 77 du = abv. 1cBr'..!- Ae sin(0 + a) ;.0 .% .,, f-a. -1 e .

.

Why.does.this show that the area of 4,11 ellipie is nab? We need this
Now we differentiate again -o get . . formula fo?'the area of an ellipse in deriving the Third Law. Hint:
(11J 'Br" - Ae co(6 4: 'ct) e ' = (b . Evaluate the last integral'by interpretation rather than calculation.

'.- ,
.."

. .
a ,-"'". .

7Vs.) 6. 0. . 93 8
...

IP -- I . et .. .



KEPLEP.LAWS AS CONSEQUENCES OF NEWTON'S LAWS

If one decides that F = mA and the Inverse Square

Law are correct, do Kepler's' Laws follow? 'This is an im-
portant question- Kepler's Laws were empirical results'.

based on fanciful hope and data which had unavoidable in-,

accuracies. ' Suppose' one can 'conduct other .experiments
which verify the Inverse Square Law. If Kepler's Laws_
area consequence 'DT the Inverse Square Law!, then Kepler's

Laws will no longer be empricalgesults from a single
set of datum. A.physical theory is strengthened by logi-
cal 'impikcat ns betveen various empiricalesults. In

this section we will show that Kepler's Laws can be de-
duded from the Inverse 'Square Law.

1

First we give an argument that for any central force
field, the motions.are plapar. Suppo'se thais the planet

is at- a Oint panasthat its-moti8n vectoi
T at that point. Draw the plane through the sun through
P, and containing the tangent vector T. If Z is the co-

ordinate normal. to this plane, then the force and hence
the acceleration in the Z direction is zero. That is
Z(t) = 0, Z'( \0) = 0 and Dv(t) = 0 for all t. This im-
plies Z(t) s 0; the motion is planar.

Secondly, if the force is a central force field we
show Kepler's First Law holds. In the planar polar coor-
dinates, ae = 0, Thus we may start at equation (9) and

retrace our steps to (8) and (7) giving the equal area-..

result.

Exervise 3. Do it.

To gett the Second- and Third Laws of Kepler,we must
specilize the central force field to,the 'Inverse Square

-14w. We have .1

100 9

( 1 2 )
, , r(l,)2 GM

r2

and pf course (8). The solOtion of. these differential

equations is difficult, but/is made easier by looking At
the gOal-. We want 1- to be a conic as in, (10). Notice
that,1/1-(0)* is very simple. This-suggests introducing
the function w(e) = 1/r(e) and deriving a differential

equaton that it satisfies. We have

dw _1 dr 1 dr dt _1 r' _r'
de r2 r2 r2 X

Then

dew d (r')dt
a- A de ='1;8de 1

1 .

using (8):

Ale,g(r(01)2-qjr

re" .4., GM

w
+ GM7 Ar20' X2

Then from (8)

'(13) dw GM+ w
de2 ' A2

I

using (2).

Itt turns out that every solution of,(13) is given in,the
form )

GM
w(e) = T + a cos(e + a)

X

' for some constants a and B > r(See.Appendix 2).

Thus- * 9

(14) B
7 e cos (e + a)

where
. A2

B,= a and e = GH

Hence any such moti'on:describes a conic section.

Notice that parabolas and hyperbolas'are possible. In

fact the constants'Ba depend on some initial Condiiion.
If they are selected,so that e > 1, then the mass leaves
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the solar system. 'The only houn-ded orbits are there-

fore ellipses 'ond ci4les as a special Ca5.0.4iThis

Kepler's Second Law.,'
4

To derive KepLer's Ih.ird
.

Law we need to., compute the

period T,',And semi-major i01,01sarof, an ellipse. Let b be

thesemi-pinRr b2 be.the focal length.

The.formulkfor'I is-easy. Since the area of an -

ellipse is.7ab, (see Exercise 2)'we have '4 (7) and (8)

or

lab =[ 7 2r v kdt = ,

1

o

Moreover

I
b2 3=M2..-

4.

Using (16).

B2. B,
. a(1

(1 + e)21 1+

'Thus

b2
1 ++,a

[2 - (1: -\e)] Ba .

* Iuttingthisinto (1S) gives

(a .1
B

e)2

-. 4.

2'a B1. .e (1,..,, +7e)2

e)

Figure 4. An elIipse.with the focus at'the origin.
This is the picture that Kepler saw fh his mind's eye.
.1t is one (e can describe neatly in polar coordinates.

The major axis of,an ellipse with ends P and P' has leilgth

2a% The length PT is the minimum distance from F to the

ellipse, P'F is, maximum, while the focal distance c from,

the center C is c = 1/21PPI IPFI = a IPF't1

Li:Coking jet (14) we, see that r is smallest when
-

cos(0.+ a) =-1 and largest when cos(0 + a) -1. Thqs
. ,

/' (1-11-'7 +
(16) a ej` e2,v .

.1 24
4

.11

-ti

472 472 A' 3 472 3. (17) I! = --.--- Ba =
. x2 x2 Tq/..1 GM a

w
\But. 472/GM'is a COnstantthat only. depends'on the units

and the mass of the sun, a Solar System Constant! Tilts

is Kepler's Third Law. '.

4
7; COMMENTS.

%
'We have discussed the relations hip between Kepler's

Laws and the Overse Square Law in the context Of two

masses., We alsO assumed that the ldrger'mass.wasfixed.

In fa'ct, it will wobble. slightly. Whatis fixed is the

common center of mass. When more than two masses are in

volved, ex-act description of the motibils can,be aScet-
,

-taineA only in, very- special cases. %This- is called the

n-body problem. It is the focus of a great deal of

mathematiCal research.'

O
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A. FURTHER EcCERCISES dinates) G is called the potKtial energy; .2. m(ds/dt) is kinetic
. 4

I

energy. The result of this Exercise is the Conservation of Enegy.
.

Exercise 11. Describe a 1.aboratory experiment that would show that.

Exercise 4. Suppose you observethat'for the,earth.a = 1.495 X ia, celtripetalaccelration is K6-12/0. Newton did this with a thought

. .

km: and I -= 365.25 leys. If G = 6.670 x 10-P in m3 /kg -sect find .experiment. He reasoned that the moon must "fall" in its circular
the mass of the Sun. / orbit in one second the same distance as'if itawereAropped.from a

-Exercise 5. If the eccentricity of the earth's orbit is given o

be 0.167322, and a in Exercise 4 findthe exact equation of e

earth's orbit.
_

.

Exercise 6. You know that the usual expression fOr gravity at sea

level is g = -9.807' m/sec2. Use the Inverse,Sqtare.Law and the fact

that we may replace the earth by a paint mass A Ats center to get
. r

an exact bxprestion for the Inverse Square, Law with the earth being

the latge mass. Us% 6371 km. as the radius of the earth. Find the

mass of the earth. Hint: Compare the two'formulae at the surface

of the earth.

. Exercise 7. If a satellite' going aidund the earth remains in a Cir-

cular orbit, then cenvipetal acceleration must balance the acceler-

ation dueto4gravity: Using this equation: compute the linear .speed

v the satellite must have if its altitude is 100 miles above sea

level. gnore air resistance.) 1 mile = 1f16.35 meters.

Exercise 8. The Intelsat series geosynchronous, satellite emains

above a fixed point on the earth's equator.. If it is in ;Circular

0
orbityou Can deduce its altitude. .Please do.

Exercise 9. OSO 4, launched October 18, 1967 was in an orbit .with

radius between 5. 375-and 5.697 X 105m. above s'a level. What is the

'period of its motion? o

Exercia 10, Take the general formula mar = f(r)with

(8). Multiply by r' and j.ntegrate once.' Thent replace

derive the formula

a 0.
.

7 m ciij + G(r) =
1. (ds 2

.
...

where dG/dr= (You may recall the formula foog ds in
.

polar coor-
,.

.

.1 \ .
,s

13

constant

0' removed by

A by (8) acid

A

stationary pos ition.

9. HINTS TO:TlE SOLUTIONS OF TIE 4hXERbSES

z
.

Exercise 1. From (8) 0' = X/r2 is a constant. For a circle s = re
$ ''so y = ds/dt = re' = x/r. Since r" = 0. ar = -r(6')2 =

dz$

From 27rr ='vT and Kepler's Third Law ar =C/r4.

Exercise 2. The last integral is the areaof'a un$ circle.

Exercise 4. Solve (17) for

Exercise 5. Use (16) to compute B.

Exercise 6. Write f(r) = m'C/r2, f(6371. x 10) = -mg:

Compare with (2) to find

Exerci5e 7. The equation C/r2 = v2/r can be solved for v in terms

.of known quantities.
e :

Exercise 8. Compute v = tor, to the rate of spin of the earth

apply the equation in Exercise 6 to find r, or use (17).

Exercise 9. Apply the derivation of (16) to find a., and then use

(17).

6 Exercise 10. ds2 dr2 r2de2

Exercise 11. Spin a weight at the end of a string. Measure the

tug of the string. Keeping refixed, double the speed, remeasure

the tug.- Keeping V fixed, double r.

,105

111

0
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10. MODEL EXAM

Mr

. --.....-

. ,

;1.. ose we are considering a planet'smotion around the'Sun.

a) At what point
-
on

10the orbit the vector from the Sun -to

the planet turning the most rapidly?f(First Law)

.

b) Recalling that speed v = ds /dt, finda formula for the

speed of the planet which involves the polar coordinates

/ r and other constants, butt not 6. (Second and First Laws)::

%

On the bagis of b),'when is the speed the maximum? ;-

4 .
.

'2. Using the Third LaW, (or otherwise) find the relationship be-

tween'the period of a satellite in a circUlar.otbitl'and its

distance from the center of the earth,

t

3., Describe Why Kepler's Laws were, more acceptable after Newton's
.

'4

work.0.

4. ,GAven that' the 'acceleration dile:to gravity at sea level onthe

earth i9 g = -32, ft /sect . 'kind khe,,constani in the Inverse

'Square Law in the units feet and seconds. Use the radius of

the, earth as 4000 miles and SUB feet:in 1 mile. .

.SuPpose that Ihe.gravitati

- still be true that in a satellite's

sweeps area out in a constant rate?'

rce were F k/r Ut. 'Would it,

tionp'the radius

0

c \

e

-4

-

.
. \,:

E. APPSDIX 1 '

,
---,r ,

Conics in Polar Coord,nates. If one of the fOci at

the orkgih then the tquaViop cirany-gonic, section. ill: p6-

lar coordinates is of the-form . - ' a, .

r Sw B
1 + e cos(e + ct)t

.The number e'is called the ec entricity

' conic sections are given by th table

J.
. e = 0: 'circle

0 < e < 1: ellapse.

e .
e =1: parabola

'e > 1: hyperbola

The table is easy-to remembers If e < 1 then the

aa.

and the various

denominptor'ig never zero and r is boundeso we have an

ellipse. If e = 1 then the denominator is ;ero precisely

once as 0 traverses a,complete rOtatioQv'tte pbint -(r0)

"jumping across the open end of.the parabola at infihlty."

If e :then-4- is infinite twice "jumping from one

branchof the hyperbola to the other" each time.

-

.1

- '

-

APPENDIX 2

. .

Solutions .-of certain Differential Equptions. We want to
4

show that the differential equation, >+
, . . .

* v" v v --lr

with v(0) = ao. , v'(0) = hi has anuni -solution.
. . r r
sSuppose v1 and,v2 are two olutions ancrlet h ofi'Eoi t

function pulled out of a hat) be defined by

V

Then '

.17 h'(0)

..h(0)

=

=(v;

= (v

v2) (v1

v2)(.(V1

2
)2

v2)'

- v2)

+

r

(v'
1

v')2 .

(v' - v') (v"
1 2 1

,

(v7

v")
2.

15 10 16
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a

= tv; v;)(1) - DJ .# 0 (Using * twice)

so h ie a constant. But h(0) = 0 means (v1 - v
2
)2 +

(V; V02 E 0. Thus vi v2 f 0. That is vi =' v2.

Now one solution of the problem is (just plug it in)

with

v(6) = D

D -

cot a
a

al
sin a

ao

cos (e a)
A

if al # 0. If a, = 0take v(8) = D - (D - ao)cos 6.

Since every solution of the differential equation saris-

' Pies the extra conditions at 0 for some ao and a it is
of the form v = a cos(6 + a). To make $ > 0 replace

aby a + t singe cos(6 + a + = -cos(6 + a) changes

the sign of 13-.

a

t

.4

DETAILED SOLUTIONS TQ EXERCISES

Note that We are using rounded off data so that these r Its

may not agree exactly with published ables of data

Exercise L. From (8) 8' = X/r2 is constant. On a circle arclength
4

S = 8r so v = ds/dt = re': Now r" = 0 so ar = - r(8')2'= -(v2./r).

Compute the circumfgrence of the circle in two ways. Then 2tr = vT

and use th&Third Law to write

140, 2', 4,1T2r
4m2Kar = - .- = -k7.i

,22 1
- 4n2r(1.4=A . -

I' ' r T2 A r2

Exercise 2. The first integral is the usual'area integral for the

ellipse x2 /al + y2/b2 1. Let x = au to get the last integral. .

This integral computes the area of the unit circle so is'7,
$

Exercise 4. By (17), M =44242gT2. Put into m, kg, sec. Then

G = 6.670 x 10-11, a = 1.495 x 101,1 m, T = (365..25)(24)(3600)sec =

3.156 x 10' sec. Thus M = 4t2(1.495)31033/(6.670)(3.156)2 x 103 =

1-.986 x 1088 kg,.

,Exercise S. By (16), B = a(1 - e2) = (1.495) x 108(1 - (.1673)2)

= 1.453 x 108. Now put into (14).

Exercise 6. 'f(r) = - (Cm /r2). At sea level -(em/7.2) = gm.

'Writing everything in m and kg., C.= -gr2 = (9.807)(6.371 x 106)g .

3.981 x 1014. But mC = mMG so M = C /G' 3.981, x 1014/6.671; X 101
= 5.968 x 102"kg.

Exercise ,7., From v2jr = C/r2, v2 = C/r, with C as in.Exercise 8.

v2 = t\(3.981)' x 10141/But r = (6.371) x.108 + 100(1609.35)m, so

r, 0 (6..532 x 108],=,.6005 X 108. Thus v = 7.-807 x 103 m/sec.

4xercise 8. a) Let w be the' rate of spin of the earth, Then

w =-2t/24(3600) = .727 x 10-4 rad/5ec. Thu's v = wr and C/r2 = v2/r

as.in Exercise 7 lead to, r3 = C/w2 = 3,981 x 10r4/(.7--27 52' >( 10-8 =

75.32 ie'102 1(m) . 'Oen = 4.223 X 10.i m
.

;

b) 'Alternately, 'USing (17) r, GMT2/4a2 and the results of

Exercise 6,

109
18



I

2.

'is-3 = (6.670) x 10 (5.968) x 102" (24x3600)2/4n2

'= 75.27 x 1021

i'= 4.222 x 1 03m.

Exercise 9. Look, at the derivation of (16)..

2(faax distance + min distance).

The maximum distance1is (5.697 x 105 + 6.371 x .106)m' and the minimun

distance is '15.375 x lu' + 6.571 x 106)m. Thus *a26.925;x

Apply (17Y.

T2 4v2a3/Gm

= 02(6.925 x 106)3/(6.670,x 10-11)(5.968x 1024)

= 32.94 x T06sec2.

= 5.739 x 103sec. (The listed period is 95.7'min.)

Exercise 10. From m(r" - 2(61)2) = f(r) we get

so

m[r"
A2

= f(r)

r'
niter". - A2 1 -sif(2) 2° = 0.

Notice that.

and

1
10,2

2 r'
-[m(r!)2 + ----Itch m(rq" - A --I
2 2r2 , - 2'3

. ..

j

dTer) = G(r)r' = -f(r)r'.

Thus A

d 1

d- t 2

mA2
+ G(r)) = 0.

2r2

4.

1.

2

ANSWERS TO MODEL EXAM

From the first law 6' = A/r2, so 6" is largest when r

is smallest.

b) v2 j 2 (dr12 2(
del2 12 21(1612

td6 dt r [dt)dt iaij r

dr 2
2 "" 2

(CA Ndr) (*) 2.

s °
Now

B
ro=

.1 + e cos 6

so

dr B e sin 6

(1 + e cos 0)g

Thus to

r2 +
B2

idt)2 (1 + ecos 0)4 +
C cos

r 2

= (1 +,e 2ecos6).

But

B
e cos 6 = - - 1r
sd

2 .(eif- 1)A 2 2A 2
V - +

B2 Br

0)2 e2 sin2 0)

befall that B> 0, so v2 is largest when r is smallest.

2. a) The third law is T2 = kr3. compute the distance travelled

in one period two ways, VT = 2nr. Now eliminate T to get

- -
v
2

=
4n2 1

or

SI

'

') i. Y7
This makis the bracket a con tant. Now replace X by r26t.to get 4,

b) Centripetal acceleration mugs balance the inverse square
".t:':' e

= constant- , 4 acceleration. Thus

1,
.131.1t

2 2 2
m('(r')2 r (69 I +. GU)

'
*dr 2 d

2 -

ds
= =

(a) 4+17.r2(1E) (dt)

so we.get

1"
7.;" mv2 +

110.
= constant.

19

V2 GM
r r2

from which

2 GM
v = .

r.

20



3. Newton showed that Kepler's Law% follow from the Inverse Square

lAaw, So if one accepts the,Iatter then Kepler's Laws are also

Acptab/e.
, r

,

4. If f(r) ,,then

f(4000.5280) = -32,

e
thus, -

k = 32(5280)2(4000)2. :

5. Yes, the first law on thearea wept Out by the radius vector

holds in any central force field.

4

, .

41"
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EDC/pAi
55' Chapel St.

.

Newton,' MA 02160

41.

Student:- If you have trouble with a specific part of this unit, -please fill
out this form and take it,td your instructor for assistance. the information
you give will help the author to revise the unit.

Your Name Unit No.

OR OR

Page

SeCtion Model Exam
PrOblen No.'.'() Upper

()Middle

0 Lower

Paragraph Text.

Problem No.

Description of Difficulty: -.(Please be specific)

<41

Instriuctor:' Please indicate your.resolution of.tne difficulty in this box,

(:2) Corrected errors.in materials. List corrections here:

I

.,.: .

Gave studenp,better explanatione example, or procedure than ip unit.
Give brief °aline of your addition. here:

il
01 ,
' l'; 4

s 1

(2) Assisted student in acquiring general learning and problem-solving
skills (not using e pies from this unit.)

11 3

Instructor's Signature

Please use reverse if necessary.
.



Name

. Institution '

Return to:
STUDENT FORM 2 EDC/UMAP

55 Chapel St.
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Newton; MA 02160

Unit No.

_ Course No.

Date .

Check the choice fdr each question that comes cloAst to your personal opinion.

1: How useful was the amount of detail in the unit?

Not enough detail to understand the unit
Unit would have been clearer with more detail,
Appropriate amount of detail
Unit was occasionally too detailed,. but this was not distracting
Too much detail; I-was often distracted

2. How helpful were the problem answers?

Sample solutions were too.brief; I could not do the Intel-mediate steps
Sufficient information was given to solk,e the problems
Sample solutions were too detailed; I didn't need them:

Except for fulfilling the prerecmsites, how much did you use other sources (fOr'
example,, instructor, friends, or ottAT books) in order to understand the unit?

A Lot Somewhat % A Little Not at all

P

4. How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical math or science course?

Much Somewhat About Somewhat Much

Longer Longer the Same Shorter Shorter

5. Were any of the following parts of the unit confusing or distracting?" (Check
as many as apply.) . .

Prerequisites , ..

, Statement of skills and concepts (objectives)
Paragraph headings . ,

.

Examples . .

Special Asai;tance Supplement'(if present)
Other., please explain 4

,

,
.

6. Were any of'the following parts of the unit particularly helpful? (Check as many

as apply.)
Prerequisites' . .

v Statement of skills and concepts (objectives)
.1. Examples

Problems
. Paragraph headings

Table of Contents .

Assistance Supplement (if present)

Other, please explain

Please describe anything in the unit that you did not particularly like.
. %,

Please describe anything that you found particularly helpful. (Please use the .back of

this sheet if you need more space.)


